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1 Sets and Functions

1.1 Sets

Definition 1.1 (P(X))
The power set P(X) of a set X is the set of all subsets of X .

Note on Example If X = {1, 2, 3}, then

P(X) = {∅, {1}, {2}, {3}, {2, 3}, {1, 3}, {1, 2}, {1, 2, 3}}.

Definition 1.2 (Ac)
A complement refers to the set of points not in A, i.e.,

Ac = {x ∈ X : x /∈ A}.

Definition 1.3 (A\B)

A−B = A ∩BC

Theorem 1.1
Commutativity:

A ∪B = B ∪A A ∩B = B ∩A

Associativity:

A ∪ (B ∪ C) = (A ∪B) ∪ C A ∩ (B ∩ C) = (A ∩B) ∩ C

Distributive Laws:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

De Morgan’s laws:

(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc



1 Sets and Functions

Definition 1.4 (Union and Intersection)
Let C be a collection of sets. Then the union of C and the intersection of C are⋃

C = {x : x ∈ X for some X ∈ C}
⋂

C = {x : x ∈ X for every X ∈ C}.

Note on The operations of union and intersection can be extended to infinite collections of sets

as well. For example, let S = (0, 1] and define Ai = [(1/i), 1], then
∞⋃
i=1

Ai =

∞⋃
i=1

[(1/i), 1] = {x ∈ (0, 1] : x ∈ [(1/i), 1] for some i}

= {x ∈ (0, 1]} = (0, 1]

∞⋂
i=1

Ai =
∞⋂
i=1

[(1/i), 1] = {x ∈ (0, 1] : x ∈ [(1/i), 1] for all i}

= {x ∈ (0, 1] : x ∈ [1, 1]} = {1}
It is also possible to define unions and intersections over uncountable collections of sets. For

example, we take Γ = { all positive real numbers } and Aa = (0, a], then ∪a∈ΓAa = (0,∞) is

an uncountable union.

Definition 1.5 (Cartesian product X × Y )
The Cartesian product X×Y of sets X,Y is the set of all ordered pairs (x, y) with x ∈ X

and y ∈ Y .

Definition 1.6 (Symmetric difference)
Symmetric difference of A and B refers to the set of points that are in one of the sets but

not the other.

A∆B = (A−B) ∪ (B −A)

Definition 1.7 (Ai ↑ and Ai ↓)
(1) Ai ↑ if A1 ⊂ A2 ⊂ . . . and write Ai ↑ A if in addition A = ∪∞

i=1Ai.

(2) Ai ↓ if A1 ⊃ A2 ⊃ . . . and write Ai ↓ A if in addition A = ∩∞
i=1Ai.

1.2 Function

Definition 1.8 (Support)
If f : X → R, the support of f is the closure of the set {x : f(x) ̸= 0}.

Definition 1.9 (Graph)
The graph of a function f : X → Y is the subset Gf of X × Y defined by

Gf = {(x, y) ∈ X × Y : x ∈ X and y = f(x)}.
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Definition 1.10 (Range or Image)
The range, or image, of a function f : X → Y is the set of values

ran f = {y ∈ Y : y = f(x) for some x ∈ X}.

Definition 1.11 (Onto function)
A function is onto if its range is all of Y ; that is, if

for every y ∈ Y there exists x ∈ X such that y = f(x).

Definition 1.12 (One-to-one function)
A function is one-to-one if it maps distinct elements of X to distinct elements of Y ; that

is, if

x1, x2 ∈ X and x1 ̸= x2 implies that f (x1) ̸= f (x2) .

Note on An onto function is also called a surjection, a one-to-one function an injection, and a

one-to-one, onto function a bijection.

1.3 Indexed sets

Definition 1.13 (Indexed set)
A setX is indexed by a set I , orX is an indexed set, if there is an onto function f : I → X .

We then write

X = {xi : i ∈ I}

where xi = f(i).

Definition 1.14 (Union and intersection of indexed collection)
If C = {Xi : i ∈ I} is an indexed collection of sets Xi, then we denote the union and

intersection of the sets in C by⋃
i∈I

Xi = {x : x ∈ Xi for some i ∈ I} ,
⋂
i∈I

Xi = {x : x ∈ Xi for every i ∈ I} .

Proposition 1.1 (De Morgan)
If {Xi ⊂ X : i ∈ I} is a collection of subsets of a set X , then(⋃

i∈I
Xi

)c

=
⋂
i∈I

Xc
i ,

(⋂
i∈I

Xi

)c

=
⋃
i∈I

Xc
i .

Theorem 1.2
Let f : X → Y be a function. If {Yj ⊂ Y : j ∈ J} is a collection of subsets of Y , then

f−1

⋃
j∈J

Yj

 =
⋃
j∈J

f−1 (Yj) , f−1

⋂
j∈J

Yj

 =
⋂
j∈J

f−1 (Yj) ;
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1 Sets and Functions

and if {Xi ⊂ X : i ∈ I} is a collection of subsets of X , then

f

(⋃
i∈I

Xi

)
=
⋃
i∈I

f (Xi) , f

(⋂
i∈I

Xi

)
⊂
⋂
i∈I

f (Xi) .

Note on Example The only case in which we don’t always have equality is for the image of an

intersection. For example, define f : R → R by f(x) = x2. Let A = (−1, 0) and B = (0, 1).

Then f(A ∩B) = ∅ and f(A) ∩ f(B) = (0, 1) ̸= f(A ∩B).

Definition 1.15 (Cartesian product of C)
If C = {Xi : i ∈ I} is an indexed collection of sets Xi, the cartesian product of C is the

set of functions that assign to each index i ∈ I an element xi ∈ Xi. That is,∏
i∈I

Xi =

{
f : I →

⋃
i∈I

Xi : f(i) ∈ Xi for every i ∈ I

}
.

Definition 1.16
Let

Σ = {(s1, s2, s3, . . . , sk, . . .) : sk = 0, 1}

denote the set of all binary sequences; that is, sequences whose terms are either 0 or 1.

Note on Example Let 2 = {0, 1}. Then Σ = 2N.

1.4 Relations

Definition 1.17 (Binary relation R)
A binary relation R on sets X and Y is a difinite relation between elements of X and

elements of Y . We write xRy if x ∈ X and y ∈ Y are related.

Note on A function f : X → Y determines a relation F on X and Y by: xFy iff y = f(x).

Note on Two important types of relations are orders and equivalence relations.

Definition 1.18 (Graph GR)
The graph GR of a relation R on X and Y is the subset of X × Y defined by

GR = {(x, y) ∈ X × Y : xRy}.

Definition 1.19 (Order ⪯)
A set X has a partial order “⪯” if

(1) reflexivity. x ⪯ x for all x ∈ X;

(2) antisymmetry. if x ⪯ y and y ⪯ x, then x = y;

(3) transitivity. if x ⪯ y and y ⪯ z, then x ⪯ z.

4



1 Sets and Functions

Note on We define a corresponding strict order ≺ by

x ≺ y if x ⪯ y and x ̸= y.

Definition 1.20 (Equivalence relation ∼)
A set X has an equivalence relationship “∼” if

(1) reflexivity. x ∼ x for all x ∈ X;

(2) symmetry. if x ∼ y, then y ∼ x;

(3) transitivity. if x ∼ y and y ∼ z, then x ∼ z.

Note on Interpretation (Zhihu, 2018) “∼” is a kind of generalization of “=”.

Definition 1.21 (X/ ∼)
For each x ∈ X , the set of elements equivalent to x,

[x/ ∼] = {y ∈ X : x ∼ y},

is called the equivalence class of x with respect to ∼. [x/ ∼] is also denoted simply by

[x]. The set of equivalence classes of an equivalence relation ∼ on a set X is denoted by

X/ ∼.

Theorem 1.3
Let ∼ be an equivalence relation on a set X . Every equivalence class is non-empty, and

X is the disjoint union of the equivalence classes of ∼.

Note on If x ∈ X , then the symmetry of ∼ implies that x ∈ [x].

Definition 1.22 (x ∨ y and x ∧ y)

x ∨ y = max(x, y) x ∧ y = min(x, y)

1.5 Countable and Uncountable Sets

Definition 1.23 (X ≈ Y and X ≲ Y )
(1) Two sets X,Y have equal cardinality, written X ≈ Y , if there is a one-to-one, onto

map f : X → Y .

(2) The cardinality of X is less than or equal to the cardinality of Y , written X ≲ Y ,

if there is a one-to-one (but not necessarily onto) map g : X → Y .

Theorem 1.4 (Schröder-Bernstein)
If X,Y are sets such that there are one-to-one maps f : X → Y and g : Y → X , then

there is a one-to-one, onto map h : X → Y .
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2 Numbers

Definition 1.24 (Finite / Countably infinite / Infinite / Countable / Uncountable)
A set X is:

(1) Finite if it is the empty set or X ≈ {1, 2, . . . , n} for some n ∈ N;

(2) Countably infinite (or denumerable) if X ≈ N;

(3) Infinite if it is not finite;

(4) Countable if it is finite or countably infinite;

(5) Uncountable if it is not countable.

Note on Example The set of squares

S =
{
1, 4, 9, 16, . . . , n2, . . .

}
is countably infinite since f : N → S defined by f(n) = n2 is one-to-one and onto.

Definition 1.25
A set has the cardinality of the continuum if X ≈ R.

Proposition 1.2
A non-empty set X is countable iff there is an onto map f : N → X .

Proposition 1.3
The Cartesian product N× N is countably infinite.

Theorem 1.5
A countable union of countable sets is countable.

Theorem 1.6
The power set P(N) of N is uncountable.

2 Numbers

Proposition 2.1
The set of integers Z is countably infinite.

Definition 2.1 (Q)
The set of rational numbers is defined by

Q =

{
p

q
: p, q ∈ Z and q ̸= 0

}
,

where we may cancel common factors from the numerator and denominator, meaning that
p1
q1

=
p2
q2

if and only if p1q2 = p2q1.

Note on We can construct Q from Z as the collection of equivalence classes in Z×Z\{0} with

respect to the equivalence relation (p1, q1) ∼ (p2, q2) if p1q2 = p2q1.
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2 Numbers

Note on The rational numbers are linearly ordered by their standard order. Moreover, this order

is dense, meaning that if r1, r2 ∈ Q and r1 < r2, then there exists a rational number r ∈ Q

between them with r1 < r < r2. For example, we can take

r =
1

2
(r1 + r2)

. In addition, there are a lot of “gaps” between rational numbers which are filled by the irrational

real numbers.

Theorem 2.1
The rational numbers are countably infinite.

Note on Altenatively, we can write

Q =
⋃
q∈N

{p/q : p ∈ Z}

as a countable union of countable sets.

Definition 2.2 (sup and inf)
Suppose that A ⊂ R is a set of real numbers. If M ∈ R is an upper bound of A such

that M ≤ M ′ for every upper bound M ′ of A, then M is called the least upper bound or

supremum of A, denoted

M = supA.

If m ∈ R is a lower bound of A such that m ≥ m′ for every lower bound m′ of A, then

m is called the greatest lower bound or infimum of A, denoted

m = inf A.

If A = {xi : i ∈ I} is an indexed subset of R, we also write

supA = sup
i∈I

xi, inf A = inf
i∈I

xi.

Definition 2.3 (R)
To specify the supremum and infimum, we introduce a system of extended real numbers

R = {−∞} ∪ R ∪ {∞}.

If a set A ⊂ R is not bounded from above, then supA = ∞, and if A is not bounded from

below, then inf A = −∞.

Theorem 2.2
If x ∈ R, then there exists n ∈ N such that x < n.

Theorem 2.3
The set of real numbers is uncountable.
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3 Sequences

Proposition 2.2
If A ⊂ R, then M = supA iff:

(a) M is an upper boudn of A;

(b) for every M ′ < M there exists x ∈ A such that x > M ′.

Note on
(1) If M is an upper bound of A, then supA ≤ M ;

(2) If A is nonempty and bounded from above, then for every ϵ > 0, there exists x ∈ A such

that x > supA− ϵ.

Proposition 2.3
Suppose that A,B are subsets of R such that A ⊂ B. Then supA ≤ supB, and

inf A ≥ inf B.

Proposition 2.4
Suppose that A,B are nonempty sets of real numbers such that x ≤ y for all x ∈ A and

y ∈ B. Then supA ≤ inf B.

Proposition 2.5
If c ≥ 0, then

sup cA = c supA, inf cA = c inf A.

If c < 0, then

sup cA = c inf A, inf cA = c supA.

Proposition 2.6
If A,B are nonempty sets, then

sup(A+B) = supA+ supB, inf(A+B) = inf A+ inf B,

sup(A−B) = supA− inf B, inf(A−B) = inf A− supB.

Proposition 2.7
Suppose that {xij : i ∈ I, j ∈ J} is a doubly-indexed set of real numbers. Then

sup
(i,j)∈I×J

xij = sup
i∈I

(
sup
j∈J

xij

)
.
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3 Sequences

3 Sequences

3.1 Convergence and limits

Proposition 3.1
A set A ⊂ R is bounded iff there exists a real number M ≥ 0 such that

|x| ≤ M for every x ∈ A.

Definition 3.1
Let A ⊂ R. The diameter of A is

diamA = sup{|x− y| : x, y ∈ A}.

Note on Then a set is bounded iff its diameter is finite.

Definition 3.2 (Sequence)
A sequence (xn) of real numbers is a function f : N → R, where xn = f(n).

Note on Example Fibonacci sequence (Fn): The nth term is given by

Fn =
1√
5

[
ϕn −

(
− 1

ϕ

)n]
, ϕ =

1 +
√
5

2
.

Definition 3.3 (Sequence converge)
A sequence (xn) of real numbers converges to a limit x ∈ R, written

x = lim
n→∞

xn, or xn → x as n → ∞,

if for every ϵ > 0 there exists N ∈ N such that

|xn − x| < ϵ for all n > N.

A sequence converges if it converges to some limit x ∈ R, otherwise it diverges.

Proposition 3.2
If a sequence converges, then its limit is unique.

Definition 3.4 (limn→∞ xn = ∞ and limn→∞ xn = −∞)
If (xn) is a sequence then

lim
n→∞

xn = ∞,

or xn → ∞ as n → ∞, if for every M ∈ R there exists N ∈ R such that

xn > M for all n > N.
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Definition 3.5
(1) A sequence (xn) of real numbers is bounded from above if there exists M ∈ R such

that xn ≤ M for all n ∈ N.

(2) A sequence (xn) of real numbers is bounded from below if there exists m ∈ R such

that xn ≥ m for all n ∈ N.

(3) A sequence is bounded if it is bounded from above and below, otherwise it is

unbounded.

Definition 3.6
A convergent sequence is bounded.

Note on Boundedness is a necessary condition for convergence, and every unbounded sequence

diverges. On the other hand, boundedness is not a sufficient condition for convergence.

Definition 3.7
Let P (x) denote a property of real numbers x ∈ R. If (xn) is a real sequence, then P (xn)

holds eventually if there exists N ∈ N such that P (xn) holds for all n > N ; and P (xn)

holds infinitely often if for every N ∈ N there exists n > N such that P (xn) holds.

Note on Example Monotonicity, Linearity,

Theorem 3.1 (Monotonicity)
If (xn) and (yn) are convergent sequences and xn ≤ yn for all n ∈ N, then

lim
n→∞

xn ≤ lim
n→∞

yn.

Theorem 3.2 (Sandwich)
Suppose that (xn) and (yn) are convergent sequences of real numbers with the same limit

L. If (zn) is a sequence such that

xn ≤ zn ≤ yn for all n ∈ N,

then (zn) also converges to L.

Corollary 3.1
If xn → x as n → ∞, then |xn| → |x| as n → ∞.

Theorem 3.3 (Linearity)
Suppose that (xn) and (yn) are convergent real sequences and c ∈ R. Then the sequences
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3 Sequences

(cxn), (xn + yn), and (xnyn) converge, and

lim
n→∞

cxn = c lim
n→∞

xn,

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn,

lim
n→∞

(xnyn) =
(
lim
n→∞

xn

)(
lim
n→∞

yn

)
.

Definition 3.8 (Increasing / Decreasing / Monotone)
(1) A sequence (xn) of real numbers is (strictly) increasing if xn+1 ≥ xn (xn+1 > xn)

for all n ∈ N.

(2) A sequence (xn) of real numbers is decreasing if xn+1 ≤ xn for all n ∈ N.

(3) A sequence (xn) of real numbers is monotone if it is increasing or decreasing.

Theorem 3.4
A monotone sequence of real numbers converges iff it is bounded.

(1) If (xn) is monotone increasing and bounded, then

lim
n→∞

xn = sup {xn : n ∈ N} .

We use xn ↑ x indicate that (xn) is a monotone increasing sequence that converges

to x.

(2) If (xn) is monotone decreasing and bounded, then

lim
n→∞

xn = inf {xn : n ∈ N} .

We use xn ↓ x indicate that (xn) is a monotone decreasing sequence that converges

to x.

Note on Examples
(1) The geometric sequence (an) is strictly monotone decreasing if 0 < a < 1, with

limn→∞ an = 0, and strictly monotone increasing if 1 < a < ∞, with limn→∞ an = ∞.

(2) The sequence (xn =
(
1 + 1

n

)n
) is strictly monotone increasing and converges to a limit

2 < e < 3.

3.2 The lim sup and lim inf

Definition 3.9 (lim supn→∞ xn and lim infn→∞ xn)
Suppose that (xn) is a sequence of real numbers. Then

lim sup
n→∞

xn = lim
n→∞

yn, yn = sup {xk : k ≥ n} ,

lim inf
n→∞

xn = lim
n→∞

zn, zn = inf {xk : k ≥ n} .
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We also write

lim sup
n→∞

xn = inf
n∈N

(
sup
k≥n

xk

)
, lim inf

n→∞
xn = sup

n∈N

(
inf
k≥n

xk

)
.

Note on Example

an =

 1, n is even

−1/n, n is odd
(1)

lim supn→∞ an = 1 and lim infn→∞ an = 0.

Definition 3.10
Suppose that (xn) is a sequence of real numbers and the sequences (yn), (zn) of possibly

extended real numbers are given by Definition 3.9. Then

lim supn→∞ xn = ∞ if yn = ∞ for every n ∈ N,

lim supn→∞ xn = −∞ if yn ↓ −∞ as n → ∞,

lim infn→∞ xn = −∞ if zn = −∞ for every n ∈ N,

lim infn→∞ xn = ∞ if zn ↑ ∞ as n → ∞.

Note on Examples Consider (xn = 1− 1
n), we have

yn = sup

{
1− 1

k
: k ≥ n

}
= 1, zn = inf

{
1− 1

k
: k ≥ n

}
= 1− 1

n
.

Thus,

lim sup
n→∞

xn = lim inf
n→∞

xn = lim
n→∞

xn = 1.

Consider (xn = (−1)n+1
(
1 + 1

n

)
), we have

yn = sup {xk : k ≥ n} =

1 + 1/n if n is odd,

1 + 1/(n+ 1) if n is even,

zn = inf {xk : k ≥ n} =

−[1 + 1/(n+ 1)] if n is odd,

−[1 + 1/n] if n is even.

And it follows that

lim sup
n→∞

xn = 1, lim inf
n→∞

xn = −1.

Theorem 3.5
Let (xn) be a real sequence. Then

y = lim sup
n→∞

xn

iff −∞ ≤ y ≤ ∞ satisfies one of the following conditions.

(1) −∞ < y < ∞ and for every ϵ > 0:

(a) there exists N ∈ N such that xn < y + ϵ for all n > N ;
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3 Sequences

(b) for every N ∈ N there exists n > N such that xn > y − ϵ.

(2) y = ∞ and for every M ∈ R, there exists n ∈ N such that xn > M , i.e., (xn) is

not bounded from above.

(3) y = −∞ and for every m ∈ R there exists N ∈ N such that xn < m for all n > N ,

i.e., xn → −∞ as n → ∞.

Theorem 3.6
A sequence (xn) of real numbers converges iff

lim inf
n→∞

xn = lim sup
n→∞

xn = x

are finite and equal, in which case

lim
n→∞

xn = x.

Note on Every sequence has a finite or infinite lim sup, but not every sequence has a limit.

Note on Example Let xn = 1 + (−1)n. Then (xn) oscillates between 0 and 2, and

lim inf
n→∞

xn = 0, lim sup
n→∞

xn = 2.

The sequence is non-negative and its lim inf is 0, but the sequence does not converge.

Corollary 3.2
Let (xn) be a sequence of real numbers. Then (xn) converges with limn→∞ xn = x iff

lim supn→∞ |xn − x| = 0.

3.3 Cauchy sequences

Definition 3.11 (Cauchy sequence)
A sequence (xn) of real numbers is a Cauchy sequence if for every ϵ > 0 there exists

N ∈ N such that

|xm − xn| < ϵ for all m,n > N.

Theorem 3.7
A sequence of real numbers converges iff it is a Cauchy sequence.

3.4 Subsequences

Definition 3.12 (Subsequence)
A subsequence of a sequence (xn) is a sequence (xnk

) of the form

xn1 , xn2 , xn3 , . . . , xnk
, . . .

where n1 < n2 < n3 < · · · < nk < . . ..
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4 Series

Definition 3.13
Let (xn) be a sequence, where xn = f(n) and f : N → R. A sequence (yk), where

yk = g(k) and g : N → R, is a subsequence of (xn) if there is a strictly increasing

function ϕ : N → N such that g = f ◦ ϕ. In that case, we write ϕ(k) = nk and yk = xnk
.

Proposition 3.3
Every subsequence of a convergent sequence converges to the limit of the sequence.

Corollary 3.3
If a sequence has subsequences that converge to different limits, then the sequence diverges.

Note on The sequence
(
(−1)n+1

)
has subsequences (1) and (−1) that converge to different

limits, so it diverges.

Definition 3.14
The limit set of a sequence (xn) is the set

{x ∈ R : there is a subsequence (xnk
) such that xnk

→ x as k → ∞}

of limits of all of its convergent subsequences.

Note on The limit set of the divergent sequence
(
(−1)n+1

)
contains two points, and is {−1, 1}.

Theorem 3.8
Suppose that (xn) is sequence of real numbers with limit set S. Then

lim sup
n→∞

xn = supS, lim inf
n→∞

xn = inf S.

3.5 The Bolzano-Weierstrass theorem

Theorem 3.9 (Bolzano-Weierstrass)
Every bounded sequence of real numbers has a convergent subsequence.

Note on The subsequence obtained is not unique. We can, however, use the Bolzano-Weierstrass

theorem to give a criterion for the convergence of a sequence in terms of the convergence of its

subsequences.

Theorem 3.10
If (xn) is a bounded sequence of real numbers such that every convergent subsequence

has the same limit x, then (xn) converges to x.
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4 Series

4.1 Convergence of series

Definition 4.1
Let (an) be a sequence of real numbers. The series

∑∞
n=1 an converges to a sum S ⊂ R

if the sequence (Sn) of partial sums

Sn =
n∑

k=1

ak

converges to S as n → ∞. Otherwise, the series diverges.

Note on Example If |a| < 1, the geometric series
∑∞

n=0 a
n converges; if a ≥ 1, the geometric

series diverges to ∞; if a ≤ −1, the geometric series diverges in an oscillatory fashion.

Proposition 4.1
A series

∑
an with positive terms an ≥ 0 converges iff its partial sums

n∑
k=1

ak ≤ M

are bounded from above, otherwise it diverges to ∞.

4.2 The Cauchy condition

Theorem 4.1 (Cauchy condition)
The series

∑∞
n=1 an covnerges iff for every ϵ > 0 there exists N ∈ N such that∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ = |am+1 + am+2 + · · ·+ an| < ϵ for all n > m > N.

Theorem 4.2
If the series

∑∞
n=1 an covnerges, then

lim
n→∞

an = 0.

Note on The condition is necessary, however, not sufficient to imply convergence. For example,

the harmonic series
∑∞

n=1
1
n diverges, even though 1/n → 0 as n → ∞.

4.3 Absolutely convergent series

Definition 4.2
The series

∑∞
n=1 an converges absolutely if

∞∑
n=1

|an| converges,
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and converges conditionally if
∞∑
n=1

an converges, but
∞∑
n=1

|an| diverges.

Note on Example The geometric series
∑

an is absolutely convergent if |a| < 1, and the

alternating harmonic series
∑∞

n=1
(−1)n+1

n is conditionally convergent.

Definition 4.3
The positive and negative part of a real number a ∈ R are given by

a+ =

 a if a > 0,

0 if a ≤ 0,
a− =

0 if a ≥ 0,

|a| if a < 0.

Note on
a = a+ − a−, |a| = a+ + a−.

Proposition 4.2
An absolutely convergent series converges. Moreover,

∑∞
n=1 an converges absolutely

iff the series
∑∞

n=1 a
+
n and

∑∞
n=1 a

−
n of positive and negative terms both converge.

Furthermore, in that case
∞∑
n=1

an =
∞∑
n=1

a+n −
∞∑
n=1

a−n ,
∞∑
n=1

|an| =
∞∑
n=1

a+n +
∞∑
n=1

a−n .

4.4 The comparison test

Theorem 4.3 (Comparison test)
Suppose that bn ≥ 0 and

∑∞
n=1 bn converges. If |an| ≤ bn, then

∑∞
n=1 an converges

absolutely.

4.5 The ratio and root tests

Theorem 4.4 (Ratio test)
Suppose that (an) is a sequence of nonzero real numbers such that the limit

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists or diverges to infinity. Then the series

∑∞
n=1 an converges absolutely if 0 ≤ r < 1

and diverges if 1 < r ≤ ∞.

16



4 Series

Theorem 4.5 (Root test)
Suppose that (an) is a sequence of real numbers and let

r = lim sup
n→∞

|an|1/n .

Then the series
∑∞

n=1 an converges absolutely if 0 ≤ r < 1 and diverges if 1 < r ≤ ∞.

Note on The root test may succeed where the ratio test fails. For example, consider the geometric

series with ratio 1/2, i.e.,
∑∞

n=1
1
22

. Then both the ratio and root test imply convergence since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim sup
n→∞

|an|1/n =
1

2
< 1.

Now consider the series obtained by switching successive odd and even terms

∞∑
n=1

bn =
1

22
+

1

2
+

1

24
+

1

23
+

1

26
+ . . . , bn =

1/2n+1 if n is odd

1/2n−1 if n is even

For this series, ∣∣∣∣bn+1

bn

∣∣∣∣ =
2 if n is odd,

1/8 if n is even,

and the ratio test doesn’t apply, since the required limit does not exist. On the other hand

lim sup
n→∞

|bn|1/n =
1

2
,

so the ratio test still works.

4.6 Alternating series

Definition 4.4
An alternating series is one in which successive terms have opposite signs.

Theorem 4.6 (Alternating series)
Suppose that (an) is a decreasing sequence of nonnegative real numbers, meaning that

0 ≤ an+1 ≤ an, such that an → 0 as n → ∞. Then the alternating series
∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + a5 − . . .

converges.

4.7 Rearrangements

Definition 4.5 (Rearrangement)
A series

∑∞
m=1 bm is a rearrangement of a series

∑∞
n=1 an if there is a one-to-one, onto

function f : N → N such that bm = af(m).

Note on If
∑

bm is a rearrangement of
∑

an with n = f(m), then
∑

an is a rearrangement of∑
bm, with m = f−1(n).

17



5 Topology of the Real Numbers

Theorem 4.7
If a series is absolutely convergent, then every rearrangement of the series converges to

the same sum.

Theorem 4.8
If a series is conditionally convergent, then it has rearrangements that converge to an

arbitrary real number and rearrangements that diverge to ∞ or −∞.

4.8 The Cauchy product

Definition 4.6 (Cauchy product)
The Cauchy product of the series

∑∞
n=0 an and

∑∞
n=0 bn is the series( ∞∑

n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
k=0

∞∑
m=0

akbm =

∞∑
n=0

(
n∑

k=0

akbn−k

)
.

Theorem 4.9 (Cauchy product)
If the series

∑∞
n=0 an and

∑∞
n=0 bn are absolutely convergent, then the Cauchy product

is absolutely convergent and
∞∑
n=0

(
n∑

k=0

akbn−k

)
=

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

5 Topology of the Real Numbers

5.1 Open sets

Definition 5.1 (Open set)
A set G ⊂ R is open if for every x ∈ G there exists a δ > 0 such that G ⊃ (x− δ, x+ δ).

Note on Example The entire set of real numbers R is obviously open, and the empty set ∅ is

open since it satisfies the definition vacuously (there is no x ∈ ∅). By contrast, the half-open

interval J = (0, 1] isn’t open, since 1 ∈ J and (1− δ, 1 + δ) isn’t a subset of J for any δ > 0.

Proposition 5.1
An arbitrary union of open sets is open, and a finite intersection of open sets is open.

Note on Example The interval In =
(
− 1

n ,
1
n

)
is open for every n ∈ N, but

∞⋂
n=1

In = {0}

is not open.

18



5 Topology of the Real Numbers

Definition 5.2
A set U ⊂ R is a neighborhood of a point x ∈ R if

U ⊃ (x− δ, x+ δ)

for some δ > 0. The open interval (x− δ, x+ δ) is called a δ-neighborbood of x.

Definition 5.3
A set G ⊂ R is open if every x ∈ G has a neighborhood U such that G ⊃ U .

Proposition 5.2
A sequence (xn) of real numbers converges to a limit x ∈ R iff for every neighborhood U

of x there exists N ∈ N such that xn ∈ U for all n > N .

Definition 5.4 (Relatively open)
If A ⊂ R then B ⊂ A is relatively open in A, or open in A, if B = A ∩ G where G is

open in R.

Note on Example Let A = [0, 1]. Then the half-open intervals (a, 1] and [0, b) are open in A

for every 0 ≤ a < 1 and 0 < b ≤ 1, since

(a, 1] = [0, 1] ∩ (a, 2), [0, b) = [0, 1] ∩ (−1, b)

and (a, 2), (−1, b) are open in R.

Definition 5.5
If A ⊂ R then a relative neighborhood in A of a point x ∈ A is a set V = A ∩ U where

U is a neighborhood of x in R.

Proposition 5.3
A set B ⊂ A is relatively open in A iff every x ∈ B has a relatively neighborhood V in

A such that B ⊃ V .

5.2 Closed sets

Definition 5.6
A set F ⊂ R is closed if F c = {x ∈ R : x /∈ F} is open.

Note on The empty set ∅ and R are both open and closed; they’re the only such sets. The set of

rational numbers Q ⊂ R is neither open nor closed. It isn’t open because every neighborhood

of a rational number contains irrational numbers, and its complement isn’t open because every

neighborhood of an irrational number contains rational numbers.

Proposition 5.4
A set F ⊂ R is closed iff the limit of every convergent sequence in F belongs to F .
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5 Topology of the Real Numbers

Note on Example Suppose that (xn) is a convergent sequence in [0, 1]. Then 0 ≤ xn ≤ 1 for

all n ∈ N, and since limits preserve (non-strict) inequalities, we have

0 ≤ lim
n→∞

xn ≤ 1,

meaning that the limit belongs to [0, 1]. On the other hand, the half-open interval I = (0, 1] isn’t

closed since, for example, (1/n) is a convergent sequence in I whose limit 0 doesn’t belong to I .

Proposition 5.5
An arbitrary intersection of closed sets is closed, and a finite union of closed sets is closed.

Note on Example If In is the closed interval In =
[
1
n , 1−

1
n

]
, then the union of the In is an

open interval
∞⋃
n=1

In = (0, 1).

Definition 5.7
Let A ⊂ R be a subset of R. Then x ∈ R is:

(1) an interior point of A if there exists δ > 0 such that A ⊃ (x− δ, x+ δ);

(2) an isolated point of A if x ∈ A and there exists δ > 0 such that x is the only point

in A that belongs to the interval (x− δ, x+ δ);

(3) a boundary point of A if for every δ > 0 the interval (x− δ, x+ δ) contains points

in A and points not in A;

(4) an accumulation point of A if for every δ > 0 the interval (x− δ, x+ δ) contains a

point in A that is distinct from x.

Note on Example Let I = (a, b) be an open interval and J = [a, b] a closed interval. Then

the set of interior points of I or J is (a, b), and the set of boundary points consists of the two

endpoints {a, b}. The set of accumulation points of I or J is the closed interval [a, b] and I, J

have no isolated points.

Let A =
{

1
n : n ∈ N

}
. Then every point of A is an isolated point.

Every point of N is both a boundary point and an isolated point. The set Q has no interior

or isolated points, and every real number is both a boundary and accumulation point of Q.

Proposition 5.6
A point x ∈ R is an accumulation point of A ⊂ R iff there is a sequence (xn) in A with

xn ̸= x for every n ∈ N such that xn → x as n → ∞.

Note on Example If A =
{

1
n : n ∈ N

}
, then 0 is an accumulation point of A, since (1/n) is a

sequence in A such that 1/n → 0 as n → ∞. On the other hand, 1 is not an accumulation point

of A since the only sequence in A that converges to 1 are the ones whose terms eventually equal

1, and the therms are required to be distinct from 1.
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5 Topology of the Real Numbers

Proposition 5.7
A set A ⊂ R is:

(1) iff every point of A is an interior point;

(2) iff every accumulation point belongs to A.

5.3 Compact sets

Definition 5.8 (Sequentially compact)
A setK ⊂ R is sequentially compact if every sequence inK has a convergent subsequence

whose limit belongs to K.

Note on Example The open interval I = (0, 1) is not compact. The sequence (1/n) in I

converges to 0. The set N is closed, but it is not compact. The sequence (n) in N has no

convergent subsequence.

Theorem 5.1 (Bolzano-Weierstrass)
A subset of R is sequentially compact iff it is closed and bounded.

Note on Example Let A =
{

1
n : n ∈ N

}
. Then A is not compact, since it isn’t closed. However,

the set K = A ∪ {0} is closed and bounded, so it is compact.

Proposition 5.8
If K ⊂ R is compact, then K has a maximum and minimum.

Theorem 5.2
Let {Kn : n ∈ N} be a decreasing sequence of nonempty compact sets of real numbers,

meaning that

K1 ⊃ K2 ⊃ · · · ⊃ Kn ⊃ Kn+1 ⊃ . . . ,

and Kn ̸= ∅. Then
∞⋂
n=1

Kn ̸= ∅.

Moreover, if diamKn → 0 as n → ∞, then the intersection consists of a single point.

Note on We refer to a decreasing sequence of sets as a nested sequence. In the case when each

Kn = [an, bn] is a compact interval, the preceding result is called the nested interval theorem.

For example, the nested compact intervals [0, 1 + 1/n] have nonempty intersection [0, 1]. Here

diam[0, 1 + 1/n] → 1 as n → ∞, and the intersection consists of an interval. The nested

compact intervals [0, 1/n] have nonempty intersection {0}, since diam[0, 1/n] → 0 as n → ∞.

Define a nested sequence A1 ⊃ A2 ⊃ . . . of non-compact sets by

An =

{
1

k
: k = n, n+ 1, n+ 2, . . .

}
,
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5 Topology of the Real Numbers

Then
⋂∞

n=1An = ∅. However, if we add 0 to the An to make them compact and define

Kn = An ∪ {0}, then the intersection
∞⋂
n=1

Kn = {0}

is nonempty.

Definition 5.9 ((Open) Cover)
Let A ⊂ R.

(1) A cover of A is a collection of sets {Ai ⊂ R : i ∈ I} whose union contains A,⋃
i∈I

Ai ⊃ A.

(2) An open cover of A is a cover such that Ai is open for every i ∈ I .

Note on Example Let Ai = (1/i, 2). Then C = {Ai : i ∈ N} is an open cover of (0, 1], since
∞⋃
i=1

(
1

i
, 2

)
= (0, 2) ⊃ (0, 1].

On the other hand, C is not a cover of [0, 1] since its union does not contain 0.

If Ai = (i − 1, i + 1), then {Ai : i ∈ Z} is an open cover of R. On the other hand, if

Bi = (i, i+ 1), then {Bi : i ∈ Z} is not open cover of R, since its union doesn’t contain any of

the integers. Finally, if Ci = [i, i + 1), then {Ci : i ∈ Z} is a cover of R by disjoint, half-open

intervals, but it isn’t an open cover.

Definition 5.10
Suppose that C = {Ai ⊂ R : i ∈ I} is a cover of A ⊂ R.

(1) A subcover S of C is a sub-collection S ⊂ C that covers A, meaning that

S = {Aik ∈ C : k ∈ J} ,
⋃
k∈J

Aik ⊃ A.

(2) A finite subcover is a subcover {Ai1 , Ai2 , . . . , Ain} that consists of finitely many

sets.

Note on Example Let Ai = (1/i, 2). Then C = {Ai : i ∈ N} is an open cover of (0, 1], since
∞⋃
i=1

(
1

i
, 2

)
= (0, 2) ⊃ (0, 1].

Then {A2j : j ∈ N} is a subcover. However, there is no finite subcover. On the other hand, the

cover C′ = C ∪ {(−δ, δ)} of [0, 1] does have a finite subcover.

Definition 5.11
A set K ⊂ R is compact if every open cover of K has a finite subcover.

Note on Example The collection of open intervals

{Ai : i ∈ N} , Ai = (i− 1, i+ 1)
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5 Topology of the Real Numbers

is an open cover of the natural numbers N, since
∞⋃
i=1

Ai = (0,∞) ⊃ N.

However, no finite sub-collection {Ai1 , Ai2 , . . . , Ain} covers N. Thus, N is not compact.

Theorem 5.3 (Heine-Borel)
A subset of R is compact iff it is closed and bounded.

Corollary 5.1
A subset of R is compact iff it is sequentially compact.

Note on This can be generalizes to an arbitrary metric space.

5.4 Connected sets

Definition 5.12
(1) A set of real numbersA ⊂ R is disconnected if there are disjoint open setsU, V ⊂ R

such that A ∩ U and A ∩ V are nonempty and

A = (A ∩ U) ∪ (A ∩ V ).

(2) A set is connected if it not disconnected.

Note on Example The set {0, 1} consisting of two points is disconnected. For example,

U = (−1/2, 1/2) and V = (1/2, 3/2) satisfy the definition.

The set Q of rational numbers is disconnected.

Definition 5.13
A set of real numbers I ⊂ R is an interavl if x, y ∈ I and x < y implies that z ∈ I for

every x < z < y.

Note on Example For example, (a, b), (a, b] or [a, b], if a = b, then [a, a] = {a} is an interval

that consists of a single point.

Theorem 5.4
A set of real numbers is connected iff it is an interval.

5.5 The Cantor set

Definition 5.14
We define a nested sequence (Fn) of sets Fn ⊂ [0, 1] as follows. First, we remove the

middle-third from [0, 1] to get F1:

F1 = I0 ∪ I1, I0 =

[
0,

1

3

]
, I1 =

[
2

3
, 1

]
.

Next, we remove middle-thirds from I0 and I1 and derive I00, I01, I10 and I11. Continuing
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6 Limits of Functions

in this way, we get at the nth stage a set of the form

Fn =
⋃

s∈Σn

Is,

where Σn = {(s1, s2, . . . , sn) : sn = 0, 1} is the set of binary n-tuples. Furthermore,

each Is = [as, bs] is a closed interval, and if s = (s1, s2, . . . , sn), then

as =
n∑

k=1

2sk
3k

, bs = as +
1

3n
.

The Cantor set C is the intersection

C =

∞⋂
n=1

Fn,

of the nested sequence of sets (Fn).

Note on The Cantor set C is clearly nonempty since the endpoints as, bs are contained in Fn.

These endpoints form a countably infinite set. What may be initially suprising is that there are

uncountably many other points in C that are not endpoints. For example, 1/4 is not one of the

endpoints, but it belongs to C because it has a base three expansion consisting entirely of 0’s

and 2’s.

Theorem 5.5
The Cantor set is compact.

Proof The Cantor set C is bounded, since it is a subset of [0, 1]. All the sets Fn are closed,

their intersection is closed. ■

Theorem 5.6
The Cantor set has the same cardinality as Σ.

Theorem 5.7
The set R of real numbers has the same cardinality as P(N).

6 Limits of Functions

6.1 Limits

Definition 6.1
Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an accumulation point of A.

Then limx→c f(x) = L if for every ϵ > 0 there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that |f(x)− L| < ϵ.

Proposition 6.1
The limit of a function is unique if it exists.
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Definition 6.2
A setU ⊂ R is a punctured (or deleted) neighborhood of c ∈ R ifU ⊃ (c−δ, c)∪(c, c+δ)

for some δ > 0. The set (c − δ, c) ∪ (c, c + δ) is called a punctured (or delted) δ-

neighborhood of c.

Definition 6.3
Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an accumulation point of

A. Then limx→c f(x) = L iff for every neighborhood V of L, there is a punctured

neighborhood U of c such that

x ∈ A ∩ U implies that f(x) ∈ V.

Note on This is essentially a rewording of the ϵ− δ definition.

Theorem 6.1
Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an accumulation point of A.

Then limx→c f(x) = L iff

lim
n→∞

f (xn) = L

for every sequence (xn) in A with xn ̸= c for all n ∈ N such that

lim
n→∞

xn = c.

Corollary 6.1
Suppose that f : A → R and c ∈ R is an accumulation point of A. Then limx→c f(x)

does not exist if either of the following conditions holds:

(1) There are sequences (xn), (yn) in A with xn, yn ̸= c such that

lim
n→∞

xn = lim
n→∞

yn = c, but lim
n→∞

f (xn) ̸= lim
n→∞

f (yn) .

(2) There is a sequence (xn) in A with xn ̸= c such that limn→∞ xn = c but the

sequence (f (xn)) diverges.

Note on Example
(1) Define the sign function sgn : R → R by following. Then, the limit limx→0 sgnx doesn’t

exist.

sgnx =


1 if x > 0

0 if x = 0

−1 if x < 0

(2) The limit limx→0
1
x corresponding to the function f : R\{0} → R given by f(x) = 1/x,

doesn’t exist.
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Definition 6.4
If f : A → R is a real-valued function, then

sup
A

f = sup{f(x) : x ∈ A}, inf
A

f = inf{f(x) : x ∈ A}.

Definition 6.5
If f : A → R, then f is bounded from above if supA f is finite, bounded from below if

infA f is finite, and bounded if both are finite. A function that is not bounded is said to be

unbounded.

Definition 6.6
Suppose that f : A → R and c is an accumulation point of A. Then f is locally bounded

at c if there is a neighborhood U of c such that f is bounded on A ∩ U .

Note on Example The function f : (0, 1] → R defined by f(x) = 1/x is locally bounded at

every 0 < c ≤ 1, but it is not locally bounded at 0.

Proposition 6.2
Suppose that f : A → R and c is an accumulation point of A. If limx→c f(x) exists, then

f is locally bounded at c.

Note on Example The function f : R\{0} → R defined by

f(x) = sin

(
1

x

)
is bounded, but limx→0 f(x) doesn’t exist.

6.2 Left, right, and infinite limits

Definition 6.7 (Right and left limits)
Let f : A → R, where A ⊂ R.

(1) If c ∈ R is an accumulation point of {x ∈ A : x > c}, then f has the right limit

limx→c+ f(x) = L, if for every ϵ > 0 there exists a δ > 0 such that

c < x < c+ δ and x ∈ A implies that |f(x)− L| < ϵ.

(2) If c ∈ R is an accumulation point of {x ∈ A : x < c}, then f has the left limit

limx→c− f(x) = L, if for every ϵ > 0 there exists a δ > 0 such that

c− δ < x < c and x ∈ A implies that |f(x)− L| < ϵ.

Proposition 6.3
Suppose that f : A → R, where A ⊂ R, and c ∈ R is an accumulation point of both

{x ∈ A : x > c} and {x ∈ A : x < c}. Then limx→c f(x) = L iff

lim
x→c+

f(x) = lim
x→c−

f(x) = L.
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Definition 6.8 (Limits as x → ±∞)
Let f : A → R, where A ⊂ R.

(1) If A is not bounded from above, then limx→∞ f(x) = L if for every ϵ > 0 there

exists an M ∈ R such that

x > M and x ∈ A implies that |f(x)− L| < ϵ.

(2) If A is not bounded from below, then limx→−∞ f(x) = L if for every ϵ > 0 there

exists an m ∈ R such that

x < m and x ∈ A implies that |f(x)− L| < ϵ.

Definition 6.9 (Divergence to ±∞)
Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an accumulation point of A.

Then

(1) limx→c f(x) = ∞ if for every M ∈ R there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that f(x) > M,

(2) and limx→c f(x) = −∞ if for every m ∈ R there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that f(x) < m.

6.3 Properties of limits

Theorem 6.2 (Order properties)
Suppose that f, g : A → R and c is an accumulation point of A. If

f(x) ≤ g(x) for all x ∈ A,

and limx→c f(x), limx→c g(x) exist, then

lim
x→c

f(x) ≤ lim
x→c

g(x).

Theorem 6.3 (“Sandwich” or “Squeeze” criterion)
Suppose that f, g, h : A → R and c is an accumulation point of A. If

f(x) ≤ g(x) ≤ h(x) for all x ∈ A,

and

lim
x→c

f(x) = lim
x→c

h(x) = L,

then the limit of g(x) as x → c exists and

lim
x→c

g(x) = L.
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Theorem 6.4 (Algebraic properties)
Suppose that f, g : A → R, c is an accumulation point of A, and the limits

lim
x→c

f(x) = L, lim
x→c

g(x) = M

exist. Then
lim
x→c

kf(x) = kL for every k ∈ R

lim
x→c

[f(x) + g(x)] = L+M

lim
x→c

[f(x)g(x)] = LM,

lim
x→c

f(x)

g(x)
=

L

M
if M ̸= 0

7 Continuous Functions

7.1 Continuity

Definition 7.1
Let f : A → R, where A ⊂ R, and suppose that c ∈ A. Then f is continuous at c if for

every ϵ > 0 there exists a δ > 0 such that

|x− c| < δ and x ∈ A implies that |f(x)− f(c)| < ϵ.

A function f : A → R is continuous if it is continuous at every point of A.

Definition 7.2
A function f : A → R, where A ⊂ R is continuous at c ∈ A if for every neighborhood V

of f(c) there is a neighborhood U of c such that

x ∈ A ∩ U implies that f(x) ∈ V.

Note on The ϵ− δ definition corresponds to the case when V is an ϵ-neighborhood of f(c) and

U is a δ-neighborhood of c.

Note on Note that c must belong to the domain A of f in order to define the continuity of f at

c. If c is an isolated point of A, then the continuity condition holds automatically. If c ∈ A is an

accumulation point of A, then the continuity of f at c is equivalent to the condition that

lim
x→c

f(x) = f(c).

For example, suppose that A =
{
0, 1, 12 ,

1
3 , . . . ,

1
n , . . .

}
and f : A → R is defined by

f(0) = y0, f

(
1

n

)
= yn.

Then 1/n is an isolated point of A, so f is continuous at 1/n for every choice of yn. The

remaining point 0 ∈ A is an accumulation point of A, and the condition for f to be continuous

at 0 is that

lim
n→∞

yn = y0.

28



7 Continuous Functions

Theorem 7.1
If f : A → R and c ∈ A is an accumulation point of A, then f is continuous at c iff

lim
n→∞

f (xn) = f(c)

for every sequence (xn) in A such that xn → c as n → ∞.

Note on Example The Dirichlet function f : R → R defined by

f(x) =

1 if x ∈ Q

0 if x /∈ Q

is discontinuous at every c ∈ R.

The Thomae function f : R → R defined by

f(x) =

1/q if x = p/q ∈ Q where p and q > 0 are relatively prime,

0 if x /∈ Q or x = 0.

is continuous at 0 and every irrational number and discontinuous at every nonzero rational

number.

Definition 7.3 (Discontinuity)
We give a rough classification of discontinuities of a funciton f : A → R at an accumu-

lation point c ∈ a as follows.

(1) Removable discontinuity. limx→c f(x) = L exists but L ̸= f(c).

(2) Jump discontinuity. limx→c f(x) doesn’t exist, but both the left and right limits

exist and are different.

(3) Essential discontinuity. limx→c f(x) doesn’t exist and at least one of the left or

right limits doesn’t exist.

7.2 Properties of continuous functions

Theorem 7.2
If f, g : A → R are continuous at c ∈ A and k ∈ R, then kf , f+g, and fg are continuous

at c. Moreover, if g(c) ̸= 0 then f/g is continuous at c.

Corollary 7.1
Every polynomial function is continuous on R and every rational function is continuous

on its domain.

Theorem 7.3
Let f : A → R and g : B → R where f(A) ⊂ B. If f is continuous at c ∈ A and g is

continuous at f(c) ∈ B, then g ◦ f : A → R is continuous at c.
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Corollary 7.2
Let f : A → R and g : B → R where f(A) ⊂ B. If f is continuous on f(A), then g ◦ f
is continuous on A.

7.3 Uniform continuity

Definition 7.4
Let f : A → R, where A ⊂ R. Then f is uniformly continuous on A if for every ϵ > 0

there exists a δ > 0 such that

|x− y| < δ and x, y ∈ A implies that |f(x)− f(y)| < ϵ.

Note on The key point of this definition is that δ depends only on ϵ, not on x, y. A uniformly

continuous function on A is continuous at every point of A, but the converse is not true.

Proposition 7.1
A function f : A → R is not uniformly continuous on A iff there exists ϵ > 0 and

sequences (xn), (yn) in A such that

lim
n→∞

|xn − yn| = 0 and |f (xn)− f (yn)| ≥ ϵ0 for all n ∈ N.

Note on The sine function is uniformly continuous on R, since we can take δ = ϵ for every

x, y ∈ R.

Define f : [0, 1] → R by f(x) = x2. Then f is uniformly continuous on [0, 1] since we can

take δ = ϵ/2. However, f is continuous but not uniformly continuous on R. Let

xn = n, yn = n+
1

n
.

Then

lim
n→∞

|xn − yn| = lim
n→∞

1

n
= 0,

but

|f (xn)− f (yn)| =
(
n+

1

n

)2

− n2 = 2 +
1

n2
≥ 2 for every n ∈ N.

The function f : (0, 1] → R defined by f(x) = 1
x is continuous but not uniformly continuous

on (0, 1]. We define xn, yn ∈ (0, 1] for n ∈ N by

xn =
1

n
, yn =

1

n+ 1
.

Then |xn − yn| → 0 as n → ∞, but

|f (xn)− f (yn)| = (n+ 1)− n = 1 for every n ∈ N.

The non-uniformly continuous functions in the last two examples were unbounded. However,

even bounded continuous functions can fail to be uniformly continuous if they oscillate arbitrarily

quickly. For example, define f : (0, 1] → R by f(x) = sin
(
1
x

)
. Then f is continuous on (0, 1]
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but it isn’t uniformly continuous on (0, 1]. Define xn, yn ∈ (0, 1] for n ∈ N by

xn =
1

2nπ
, yn =

1

2nπ + π/2
.

Then |xn − yn| → 0 as n → ∞, but

|f (xn)− f (yn)| = sin
(
2nπ +

π

2

)
− sin 2nπ = 1 for all n ∈ N.

7.4 Continuous functions and open sets

Theorem 7.4
A function f : A → R is continuous on A iff f−1(V ) is open in A for every set V that is

open in R.

Note on A continuous function needn’t map open sets to open sets. However, the inverse image

of an open set under a continuous function is always open. For example, define f : R → R by

f(x) = x2, consider the open interval I = (1, 4). Then both f(I) = (1, 16) and f−1(I) =

(−2,−1) ∪ (1, 2) are open. On the other hand, if J = (−1, 1), then

f(J) = [0, 1), f−1(J) = (−1, 1),

so the inverse image of the open interval J is open, but the image is not.

Theorem 7.5
Suppose that f : I → R is continuous and I ⊂ R is an interval. Then f(I) is an interval.

Definition 7.5
An open mapping on a set A ⊂ R is a function f : A → R such that f(B) is open in R

for every set B ⊂ A that is open in A.

Note on A continuous function needn’t be open, but if f : A → R is continuous and one-to-one,

then f−1 : f(A) → R is open. For example, f(x) = x2 is not an open mapping on R, while

f : [0,∞) → R is open because it is one-to-one with a continuous inverse f−1 : [0,∞) → R

given by f−1(x) =
√
x.

7.5 Continuous functions on compact sets

Theorem 7.6
If K ⊂ R is compact and f : K → R is continuous, then f(K) is compact.

Note on Note that compactness is essential here; it is not true, in general, that a continuous

function maps closed sets to closed sets. For example, define f : R → R by f(x) = 1
1+x2 . Then

[0,∞) is closed but f([0,∞)) = (0, 1] is not.
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Theorem 7.7 (Weierstrass extreme value)
If f : K → R is continuous and K ⊂ R is compact, then f is bounded on K and f attains

its maximum and minimum values on K.

Theorem 7.8
If f : K → R is continuous and K ⊂ R is compact, then f is uniformly continuous on K.

7.6 The intermediate value theorem

Theorem 7.9 (Intermediate value)
Suppose that f : [a, b] → R is a continuous function on a closed, bounded interval. If

f(a) < 0 and f(b) > 0, or f(a) > 0 and f(b) < 0, then there is a point a < c < b such

that f(c) = 0.

Theorem 7.10 (Intermediate value theorem)
Suppose that f : [a, b] → R is a continuous function on a closed, bounded interval. Then

for every d strictly between f(a) and f(b) there is a point a < c < b such that f(c) = d.

Theorem 7.11
Suppose that f : [a, b] → R is a continuous function on a closed, bounded interval. Then

f([a, b]) = [m,M ] is a closed, bounded interval.

7.7 Monotonic functions

Definition 7.6
Let I ⊂ R be an interval. A function f : I → R is

(1) increasing if

f (x1) ≤ f (x2) if x1, x2 ∈ I and x1 < x2,

(2) strictly increasing if

f (x1) < f (x2) if x1, x2 ∈ I and x1 < x2.

An increasing or decreasing function is called a monotonic function, and a strictly in-

creasing or strictly decreasing function is called a strictly monotonic function.

Theorem 7.12
If f : I → R is monotonic on an interval I , then the left and right limits of f ,

lim
x→c−

f(x), lim
x→c+

f(x),

exist at every interior point c of I .
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Corollary 7.3
Every discontinuity of a monotonic function f : I → R at an interior point of the interval

I is a jump discontinuity.

8 Differentiable Functions

8.1 The derivative

Definition 8.1
Suppose that f : (a, b) → R and a < c < b. Then f is differentiable at c with derivative

f ′(c) if

lim
h→0

[
f(c+ h)− f(c)

h

]
= f ′(c).

Proposition 8.1
Suppose that f : (a, b) → R. Then f is differentiable at c ∈ (a, b) iff there exists a

constant A ∈ R and a function r : (a− c, b− c) → R such that

f(c+ h) = f(c) +Ah+ r(h), lim
h→0

r(h)

h
= 0.

In that case, A = f ′(c).

Definition 8.2
Suppose that f : [a, b] → R. Then f is right-differentiable at a ≤ c < b with right

derivative f ′(c+) if

lim
h→0+

[
f(c+ h)− f(c)

h

]
= f ′ (c+)

exists, and f is left-differentiable at a < c ≤ b with left derivative f ′(c−) if

lim
h→0−

[
f(c+ h)− f(c)

h

]
= lim

h→0+

[
f(c)− f(c− h)

h

]
= f ′ (c−) .

8.2 Properties of the derivative

Theorem 8.1
If f : (a, b) → R is differentiable at c ∈ (a, b), then f is continuous at c.

Definition 8.3 (Continuous differentiability)
A function f : (a, b) → R is continuously differentiable on (a, b), written f ∈ C1(a, b), if

it is differentiable on (a, b) and f ′ : (a, b) → R is continuous.
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Theorem 8.2 (Algebraic properties)
If f, g : (a, b) → R are differentiable at c ∈ (a, b) and k ∈ R, then kf , f + g, and fg are

differentiable at c with

(kf)′(c) = kf ′(c), (f + g)′(c) = f ′(c) + g′(c), (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

Furthermore, if g(c) ̸= 0, then f/g is differentiable at c with(
f

g

)′
(c) =

f ′(c)g(c)− f(c)g′(c)

g2(c)
.

8.3 The chain rule

Theorem 8.3 (Chain rule)
Let f : A → R and g : B → R where A ⊂ R and f(A) ⊂ B, and suppose that c is an

interior point of A and f(c) is an interior point of B. If f is differentiable at c and g is

differentiable at f(c), then g ◦ f : A → R is differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c).

Proposition 8.2
Suppose that f : A → R is a one-to-one function on A ⊂ R with inverse f−1 : B → R

where B = f(A). Assume that f is differentiable at an interior point c ∈ A and f−1 is

differentiable at f(c), where f(c) is an interior point of B. Then f ′(c) ̸= 0 and(
f−1

)′
(f(c)) =

1

f ′(c)
.

8.4 Extreme values

Definition 8.4
Suppose that f : A → R.

(1) Then f has a global (or absolute) maximum at c ∈ A if

f(x) ≤ f(c) for all x ∈ A,

(2) and f has a local (or relative) maximum at c ∈ A if there is a neighborhood U of c

such that

f(x) ≤ f(c) for all x ∈ A ∩ U.

Theorem 8.4
If f : A ⊂ R → R has a local extreme value at an interior point c ∈ A and f is

differentiable at c, then f ′(c) = 0.
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Proposition 8.3
Let f : [a, b] → R. If the right derivative of f exists at a, then:

(1) f ′ (a+) ≤ 0 if f has a local maximum at a;

(2) and f ′ (a+) ≥ 0 if f has a local minimum at a.

Definition 8.5
Suppose that f : A ⊂ R → R.

(1) An interior point c ∈ A such that f is not differentiable at c or f ′(c) = 0 is called

a critical point of f .

(2) An interior point where f ′(c) = 0 is called a stationary point of f .

8.5 The mean value theorem

Theorem 8.5 (Rolle)
Suppose that f : [a, b] → R is continuous on the closed, bounded interval [a, b], differen-

tiable on the open interval (a, b), and f(a) = f(b). Then there exists a < c < b such that

f ′(c) = 0.

Theorem 8.6 (Mean value)
Suppose that f : [a, b] → R is continuous on the closed, bounded interval [a, b] and

differentiable on the open interval (a, b). Then there exists a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
.

Theorem 8.7
If f : (a, b) → R is differentiable on (a, b) and f ′(x) = 0 for every a < x < b, then f is

constant on (a, b).

Corollary 8.1
If f, g : (a, b) → R are differentiable on (a, b) and f ′(x) = g′(x) for every a < x < b,

then f(x) = g(x) + C for some constant C.

Theorem 8.8
Suppose that f : (a, b) → R is differentiable on (a, b). Then f is increasing iff f ′(x) ≥ 0

for every a < x < b, and decreasing iff f ′(x) ≤ 0 for every a < x < b.

Note on Note that although f ′ > 0 implies that f is strictly increasing, f is strictly increasing

does not imply that f ′ > 0. For example, f(x) = x3 is strictly increasing on R, but f ′(0) = 0.
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8.6 Taylor’s theorem

Definition 8.6
Let f : (a, b) → R and suppose that f has n derivatives

f ′, f ′′, . . . f (n) : (a, b) → R

on (a, b). The Taylor polynomial of degree n of f at a < c < b is

Pn(x) = f(c) + f ′(c)(x− c) +
1

2!
f ′′(c)(x− c)2 + · · ·+ 1

n!
f (n)(c)(x− c)n.

Equivalently,

Pn(x) =

n∑
k=0

ak(x− c)k, ak =
1

k!
f (k)(c).

Theorem 8.9 (Taylor with Lagrange Remainder)
Suppose that f : (a, b) → R has n+ 1 derivatives on (a, b) and let a < c < b. For every

a < x < b, there exists ξ between c and x such that

f(x) = f(c) + f ′(c)(x− c) +
1

2!
f ′′(c)(x− c)2 + · · ·+ 1

n!
f (n)(c)(x− c)n +Rn(x)

where

Rn(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− c)n+1.

8.7 The inverse function theorem

Definition 8.7
A function f : A → R is locally invertible at an interior point c ∈ A if there exists open

neighborhood U of c and V of f(c) such that f |U : U → V is one-to-one and onto, in

which case f has a local inverse (f |U )
−1 : V → U .

Theorem 8.10 (Inverse function)
Suppose that f : A ⊂ R → R and c ∈ A is an interior point ofA. If f is differentiable in a

neighborhood of c, f ′(c) ̸= 0, and f ′ is continuous at c, then there are open neighborhoods

U of c and V of f(c) such that f has a local inverse (f |U )
−1 : V → U . Furthermore,

the local inverse function is differentiable at f(c) with derivative[
(f |U )

−1
]′
(f(c)) =

1

f ′(c)
.
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8.8 L’Hôspital’s rule

Theorem 8.11 (Cauchy mean value)
Suppose that f, g : [a, b] → R are continuous on the closed, bounded interval [a, b] and

differentiable on the open interval (a, b). Then there exists a < c < b such that

f ′(c)[g(b)− g(a)] = [f(b)− f(a)]g′(c).

Theorem 8.12 (L’Hôspital’s rule: 0/0)
Suppose that f, g : [a, b] → R are differentiable functions on a bounded open interval

(a, b) such that g′(x) ̸= 0 for x ∈ (a, b) and

lim
x→a+

f(x) = 0, lim
x→a+

g(x) = 0.

Then

lim
x→a+

f ′(x)

g′(x)
= L implies that lim

x→a+

f(x)

g(x)
= L.

Theorem 8.13 (L’Hôspital’s rule: ∞/∞)
Suppose that f, g : [a, b] → R are differentiable functions on a bounded open interval

(a, b) such that g′(x) ̸= 0 for x ∈ (a, b) and

lim
x→a+

|g(x)| = ∞.

Then

lim
x→a+

f ′(x)

g′(x)
= L implies that lim

x→a+

f(x)

g(x)
= L.

9 Sequences and Series of Functions

9.1 Pointwise convergence

Definition 9.1
Suppose that (fn) is a sequence of functions fn : A → R and f : A → R. Then fn → f

pointwise on A if fn(x) → f(x) as n → ∞ for every x ∈ A.

We say that the sequence (fn) converges pointwise if it converges pointwise to some

function f , in which case

f(x) = lim
n→∞

fn(x).

Note on Example Pointwise convergence does not, in general, preserve boundedness. For

example, suppose that fn : (0, 1) → R is defined by fn(x) = n
nx+1 . Then, since x ̸= 0,

lim
n→∞

fn(x) = lim
n→∞

1

x+ 1/n
=

1

x
= f(x).

We have |fn(x)| < n for all x ∈ (0, 1), so each fn is bounded on (0, 1), but the pointwise limit

f is not.
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Pointwise convergence does not, in general, preserve continuity. For example, suppose that

fn : [0, 1] → R is defined by fn(x) = xn. So fn → f pointwise where

f(x) =

0 if 0 ≤ x < 1

1 if x = 1

Although each fn is continuous on [0, 1], the pointwise limit f is not.

A pointwise convergent sequence (fn) of functions need not be uniformly bounded. For

example, suppose that fn : [0, 1] → R is defined by

fn(x) =


2n2x if 0 ≤ x ≤ 1/(2n)

2n2(1/n− x) if 1/(2n) < x < 1/n

0 1/n ≤ x ≤ 1

So fn → 0 pointwise on [0, 1].

In general, one cannot differentiate a pointwise convergent sequence. Suppose that fn :

R → R by fn(x) = sinnx
n . Then fn → 0 pointwise on R. The sequence (f ′

n) of derivatives

f ′
n(x) = cosnx does not converge pointwise on R; for example, f ′

n(π) = (−1)n does not

converge as n → ∞.

9.2 Uniform convergence

Definition 9.2
Suppose that (fn) is a sequence of functions fn : A → R and f : A → R. Then fn → f

uniformly on A if, for every ϵ > 0, there exists N ∈ N such that

n > N implies that |fn(x)− f(x)| < ϵ for all x ∈ A.

Note on The crucial point in this definition is that N depends only on ϵ and not on x ∈ A,

whereas for a pointwise convergent sequence N may depend on both ϵ and x. A uniformly

convergent sequence is always pointwise convergent (to the same limit), but the converse is not

true.

Note on Example The sequence fn(x) = xn converges pointwise on [0, 1] but not uniformly on

[0, 1]. For 0 ≤ x < 1, we have

|fn(x)− f(x)| = xn.

If 0 < ϵ < 1, we cannot make xn < ϵ for all 0 ≤ x < 1 however large we choose n. The problem

is that xn converges to 0 at an arbitrarily slow rate for x sufficiently close to 1.

The pointwise convergent sequence fn : [0, 1] → R defined by

fn(x) =


2n2x if 0 ≤ x ≤ 1/(2n)

2n2(1/n− x) if 1/(2n) < x < 1/n

0 1/n ≤ x ≤ 1
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does not converge uniformly.

The functions fn : R → R by fn(x) = sinnx
n converge uniformly to 0 on R.

9.3 Cauchy condition for uniform convergence

Definition 9.3
A sequence (fn) of functions fn : A → R is uniformly Cauchy on A if for every ϵ > 0

there exists N ∈ N such that

m,n > N implies that |fm(x)− fn(x)| < ϵ for all x ∈ A.

Theorem 9.1
A sequence (fn) of functions fn : A → R converges uniformly on A iff it is uniformly

Cauchy on A.

9.4 Properties of uniform convergence

Theorem 9.2 (Boundedness)
Suppose that fn : A → R is bounded on A for every n ∈ N and fn → f uniformly on A.

Then f : A → R is bounded on A.

Note on In particular, it follows that if a sequence of bounded functions converges pointwise to

an unbounded function, then the convergence is not uniform.

Theorem 9.3 (Continuity)
If a sequence (fn) of continuous functions fn : A → R converges uniformly on A ⊂ R to

f : A → R, then f is continuous on A.

Note on This result can be interpreted as justifying an “exchange in the order of limits”

lim
n→∞

lim
x→c

fn(x) = lim
x→c

lim
n→∞

fn(x).

Note that the uniform convergence of fn to f is sufficient, but pointwise convergence is not.

Theorem 9.4 (Differentiability)
Suppose that (fn) is a sequence of differentiable functions fn : (a, b) → R such that

fn → f and f ′
n → g uniformly for some f, g : (a, b) → R. Then f is differentiable on

(a, b) and f ′ = g.

Note on This result can be interpreted as justifying an “exchange in the order of limits”

lim
n→∞

lim
x→c

[
fn(x)− fn(c)

x− c

]
= lim

x→c
lim
n→∞

[
fn(x)− fn(c)

x− c

]
.
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9.5 Series

Definition 9.4
Suppose that (fn) is a sequence of functions fn : A → R. Let (Sn) be the sequence of

partial sums Sn : A → R, defined by

Sn(x) =
n∑

k=1

fk(x).

Then the series

S(x) =
∞∑
n=1

fn(x)

converges pointwise to S : A → R on A if Sn → S as n → ∞ pointwise on A, and

uniformly to S on A if Sn → S uniformly on A.

Note on Example The geometric series
∑∞

n=0 x
n has partial sums

Sn(x) =

n∑
k=0

xk =
1− xn+1

1− x
.

Thus, Sn(x) → 1/(1− x) as n → ∞ if |x| < 1 and diverges if |x| ≥ 1, meaning that
∞∑
n=0

xn =
1

1− x
pointwise on (−1, 1).

Since 1/(1 − x) is unbounded on (−1, 1), Theorem 9.2 implies that the convergence cannot be

uniform. The series does, however, converge uniformly on [−ρ, ρ] for every 0 ≤ ρ < 1.

Theorem 9.5 (Cauchy condition for the uniform convergence of series)
Let (fn) be a sequence of functions fn : A → R. The series

∑∞
n=1 fn converges uniformly

on A iff for every ϵ > 0 there exists N ∈ N such that∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ < ϵ for all x ∈ A and all n > m > N.

Theorem 9.6 (Weierstrass M-test)
Let (fn) be a sequence of functions fn : A → R and suppose that for every n ∈ N there

exists a constant Mn ≥ 0 such that

|fn(x)| ≤ Mn for all x ∈ A,
∞∑
n=1

Mn < ∞.

Then
∑∞

n=1 fn(x) converges uniformly on A.

Note on Example Consider the geometric series
∑∞

n=0 x
n, if |x| ≤ ρ where 0 ≤ ρ < 1, then

|xn| ≤ ρn,
∞∑
n=0

ρn < 1.

The M-test, with Mn = ρn, implies that the series converges uniformly on [−ρ, ρ].

Note on If the Weierstrass M-test applies to a series of functions to prove uniform convergence,
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then it also implies that the series converges absolutely, meaning that
∞∑
n=1

|fn(x)| < ∞ for every x ∈ A.

Thus, the M-test is not applicable to series that converge uniformly but not absolutely. For

example, let fn : R → R be the constant function fn(x) =
(−1)n+1

n . Then
∑

fn converges on R

to the constant function f(x) =
∑∞

n=1
(−1)n+1

n . The convergence
∑

fn is uniform on R since

the terms in the series do not depend on x, but the convergence isn’t absolute at any x ∈ R.

10 Power Series

10.1 Radius of convergence

Definition 10.1
A power series (centered at 0) is a series of the form

∑∞
n=0 anx

n where the constants an
are some coefficients.

Note on Every power series has a radius of convergence 0 ≤ R ≤ ∞, which depends on the

coefficients an. The power series converges absolutely in |x| < R and diverges in |x| > R.

Moreover, the convergence is uniform on every interval |x| < ρ where 0 ≤ ρ < R.

Definition 10.2
Let (an)∞n=0 be a sequence of real numbers and c ∈ R. The power series centered at c

with coefficients an is the series
∞∑
n=0

an(x− c)n.

Theorem 10.1
Let ∞∑

n=0

an(x− c)n

be a power series. There is a non-negative, extended real number 0 ≤ R ≤ ∞ such

that the series converges absolutely for 0 ≤ |x − c| < R and diverges for |x − c| > R.

Furthermore, if 0 ≤ ρ < R, then the power series converges uniformly on the interval

|x− c| ≤ ρ, and the sum of the series is continuous in |x− c| < R.

Definition 10.3
If the power series

∞∑
n=0

an(x− c)n

converges for |x − c| < R and diverges for |x − c| > R, then 0 ≤ R ≤ ∞ is called the

radius of convergence of the power series.
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10 Power Series

Note on However, this theorem does not say what happens at the endpoints x = c± R, and in

general the power series may converge or diverge there.

Theorem 10.2 (Ratio test)
Suppose that an ̸= 0 for all sufficiently large n and the limit

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
exists or diverges to infinity. Then the power series

∑∞
n=0 an(x − c)n has radius of

convergence R.

Theorem 10.3 (Hadamard)
The radius of convergence R of the power series

∑∞
n=0 an(x− c)n is given by

R =
1

lim supn→∞ |an|1/n

where R = 0 if the lim sup diverges to ∞, and R = ∞ if the lim sup is 0.

Note on Examples The geometric series
∑∞

n=0 x
n has radius of convergence

R = lim
n→∞

1

1
= 1.

It converges to
1

1− x
=

∞∑
n=0

xn for |x| < 1,

and diverges for |x| > 1. And the interval of convergence of the power series is (−1, 1).

The series
∑∞

n=1
1
nx

n has radius of convergence

R = lim
n→∞

1/n

1/(n+ 1)
= lim

n→∞

(
1 +

1

n

)
= 1.

And the interval of convergence of the power series is [−1, 1).

The power series
∑∞

n=0
1
n!x

n has radius of convergence

R = lim
n→∞

1/n!

1/(n+ 1)!
= lim

n→∞

(n+ 1)!

n!
= lim

n→∞
(n+ 1) = ∞,

so it converges for all x ∈ R. The sum is the exponential function ex.

The power series
∑∞

n=0
(−1)n

(2n)! x
2n has radius of convergence R = ∞, and it converges for

all x ∈ R. The sum is cosx.

The power series
∑∞

n=0
(−1)n

(2n+1)!x
2n+1 has radius of convergence R = ∞, and it converges

for all x ∈ R. The sum is sinx.

The power series
∑∞

n=0(n!)x
n has radius of convergence

R = lim
n→∞

n!

(n+ 1)!
= lim

n→∞

1

n+ 1
= 0,

so it converges only for x = 0.
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10 Power Series

10.2 Algebraic operations on power series

Proposition 10.1
If R,S > 0 and the functions

f(x) =
∞∑
n=0

anx
n in |x| < R, g(x) =

∞∑
n=0

bnx
n in |x| < S

are sums of convergent power series, then

(f + g)(x) =

∞∑
n=0

(an + bn)x
n in |x| < T,

(fg)(x) =
∞∑
n=0

cnx
n in |x| < T,

where T = min(R,S) and cn =
∑n

k=0 an−kbk.

Proposition 10.2
If R > 0 and

f(x) =
∞∑
n=0

anx
n in |x| < R,

is the sum of a power series with a0 ̸= 0, then there exists S > 0 such that

1

f(x)
=

∞∑
n=0

bnx
n in |x| < S.

The coefficients bn are determined recursively by

b0 =
1

a0
, bn = − 1

a0

n−1∑
k=0

an−kbk, for n ≥ 1.

Proposition 10.3
If R,S > 0 and

f(x) =
∞∑
n=0

anx
n in |x| < R, g(x) =

∞∑
n=0

bnx
n in |x| < S

are the sums of power series with b0 ̸= 0, then there exists T > 0 and coefficients cn such

that
f(x)

g(x)
=

∞∑
n=0

cnx
n in |x| < T.

10.3 Differentiation of power series

Theorem 10.4
Suppose that the power series

∑∞
n=0 an(x − c)n has radius of convergence R. Then the

power series
∞∑
n=1

nan(x− c)n−1
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10 Power Series

also has radius of convergence R.

Theorem 10.5
Suppose that the power series

f(x) =

∞∑
n=0

an(x− c)n for |x− c| < R

has radius of convergence R > 0 and sum f . Then f is differentiable in |x− c| < R and

f ′(x) =
∞∑
n=1

nan(x− c)n−1 for |x− c| < R.

Theorem 10.6
If the power series f(x) =

∑∞
n=0 an(x− c)n has radius of convergence R > 0, then f is

infinitely differentiable in |x− c| < R and

an =
f (n)(c)

n!
.

Note on This theorem looks similar to Taylor’s theorem, Theorem 8.9, but there is a fundamental

difference. Taylor’s theorem gives an expression for the error between a function and its Taylor

polynomials. No question of convergence is involved. On the other hand, this theorem asserts the

convergence of an infinite power series to a function f . The coefficients of the Taylor polynomials

and the power series are the same in both cases, but Taylor’s theorem approximates f by its

Taylor polynomials Pn(x) of degree n at c in the limit x → c with n fixed, while the power series

theorem approximates f by Pn(x) in the limit n → ∞ with x fixed.

Corollary 10.1
If two power series

∞∑
n=0

an(x− c)n,

∞∑
n=0

bn(x− c)n

have nonzero-radius of convergence and are equal in some neighborhood of 0, then

an = bn for every n = 0, 1, 2, ....

10.4 The exponential function E(x) =
∑∞

n=0
1
n!
xn

Proposition 10.4
For every x, y ∈ R,

E(x)E(y) = E(x+ y).

Note on In particular, since E(0) = 1, it follows that

E(−x) =
1

E(x)
.
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Proposition 10.5
Suppose that f : R → R is a differentiable function such that

f ′ = f, f(0) = 1.

Then f = E.

Proposition 10.6
Suppose that n is a non-negative integer. Then

lim
x→∞

xn

ex
= 0.

10.5 Smooth versus analytic functions

Definition 10.4
Let K ∈ N. A function f : (a, b) → R is Ck on (a, b), written f ∈ Ck(a, b), if it has

continuous derivatives f (j) : (a, b) → R of orders 1 ≤ j ≤ k. A function f is smooth

(or C∞, or infinitely differentiable) on (a, b), written f ∈ C∞(a, b), if it has continuous

derivatives of all orders on (a, b).

Definition 10.5
A function f : (a, b) → R is analytic on (a, b) if for every c ∈ (a, b) the function f is

the sum in a neighborhood of c of a power series centered at c with nonzero radius of

convergence.

Note on Theorem 10.6 implies that an analytic function is smooth. What is less obvious is that

a smooth function need not be analytic. For example, define ϕ : R → R by

ϕ(x) =

exp(−1/x) if x > 0

0 if x ≤ 0

Thenϕ is smooth but not analytic onR. Sinceϕ has derivatives of all orders onR andϕ(n)(0) = 0

for all n ≥ 0, the Taylor series of ϕ at 0 therefore converges to 0, so its sum is not equal to ϕ in

any neighborhood of 0.

The function ϕ illustrates that knowing the values of a smooth function and all of its

derivatives at one point does not tell us anything about the values of the function at nearby points.

This behavior contrasts with, and highlights, the remarkable property of analytic functions that

the values of an analytic function and all of its derivatives at a single point of an interval

determine the function on the whole interval.

Definition 10.6
A function f : R → R has compact support if there exists R ≥ 0 such that f(x) = 0 for

all x ∈ R with |x| ≥ R.
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11 The Riemann Integral

Note on We can similarly construct C1 or Ck functions with compact support, for example,

f(x) =

1− |x| if |x| < 1

0 if |x| ≥ 1

Using ϕ, however, we can construct a smooth (C∞) function with compact support, for example,

the function

η(x) =

exp
[
−1/

(
1− x2

)]
if |x| < 1

0 if |x| ≥ 1

is infinitely differentiable on R, since η(x) = ϕ(1 − x2) is a composition of smooth functions.

Moreover, it vanishes for |x| ≥ 1, so it is a smooth function with compact support. This function

is sometimes called a ‘bump’ function.

Proposition 10.7
Suppose that f, g : (a, b) → R are analytic functions on an open interval (a, b). If

f (n)(c) = g(n)(c) for all n ≥ 0 at some point c ∈ (a, b), then f = g on (a, b).

Proof The proof uses a common trick of going from a local result (equality of functions in a

neighborhood of a point) to a global result (equality of functions on the whole of their connected

domain) by proving that an appropriate subset is open, closed, and non-empty. ■

Note on One particular consequence of this proposition is that a non-zero analytic function on

R cannot have compact support, since an analytic function on R that is equal to zero on any

interval

(a, b) ⊂ R

must equal zero on R.

11 The Riemann Integral

Integrability is a less restrictive condition on a function than differentiability. Generally

speaking, integration makes functions smoother, while differentiation makes functions rougher.

For example, the indefinite integral of every continuous function exists and is differentiable,

whereas the derivative of a continuous function need not exist (and typically doesn’t).

The Riemann integral is the simplest integral to define, and it allows one to integrate every

continuous function as well as some not-too-badly discontinuous functions. There are, however,

many other types of integrals, the most important of which is the Lebesgue integral. The

Lebesgue integral allows one to integrate unbounded or highly discontinuous functions whose

Riemann integrals do not exist, and it has better mathematical properties than the Riemann

integral. The definition of the Lebesgue integral is more involved, requiring the use of measure

theory.
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11 The Riemann Integral

11.1 The supremum and infimum of functions

Proposition 11.1
Suppose that f, g : A → R and f ≤ g. Then

sup
A

f ≤ sup
A

g, inf
A

f ≤ inf
A

g.

Proposition 11.2
Suppose that f : A → R is a bounded function and c ∈ R. If c ≥ 0, then

sup
A

cf = c sup
A

f, inf
A

cf = c inf
A

f.

If c < 0, then

sup
A

cf = c inf
A

f, inf
A

cf = c sup
A

f.

Proposition 11.3
If f, g : A → R are bounded functions, then

sup
A

(f + g) ≤ sup
A

f + sup
A

g, inf
A
(f + g) ≥ inf

A
f + inf

A
g.

Proposition 11.4
If f, g : A → R are bounded functions, then∣∣∣∣sup

A
f − sup

A
g

∣∣∣∣ ≤ sup
A

|f − g|,
∣∣∣∣infA f − inf

A
g

∣∣∣∣ ≤ sup
A

|f − g|.

Proposition 11.5
If f, g : A → R are bounded functions such that

|f(x)− f(y)| ≤ |g(x)− g(y)| for all x, y ∈ A,

then

sup
A

f − inf
A

f ≤ sup
A

g − inf
A

g.

11.2 Definition of the integral

Definition 11.1
Let I be a nonempty, compact interval. A partition of I is a finite collection {I1, I2, . . . , In}
of almost disjoint, nonempty, compact subintervals whose union is I .

Note on Abusing notation, we will denote a partition P with subintervals Ik = [xk−1, xk] of

[a, b] either by its intervals

P = {I1, I2, . . . , In}
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11 The Riemann Integral

or by the set of endpoints of the intervals

P = {x0, x1, x2, . . . , xn−1, xn} .

Definition 11.2 (Upper (Lower) Riemann sum)
If P = {I1, I2, . . . , In} is a partition of I , let

Mk = sup
Ik

f, mk = inf
Ik

f.

The upper and lower Riemann sum of f with respect to the partition P is defined by

U(f ;P ) =
n∑

k=1

Mk |Ik| =
n∑

k=1

Mk (xk − xk−1)

L(f ;P ) =
n∑

k=1

mk |Ik| =
n∑

k=1

mk (xk − xk−1)

Definition 11.3 (Upper (Lower) Riemann integral U(f) (L(f)))
Let Π(a, b), or Π for short, denote the collection of all partitions of [a, b]. The upper and

lower Riemann integral of f on [a, b] is defined by

U(f) = inf
P∈Π

U(f ;P ) L(f) = sup
P∈Π

L(f ;P ).

Note on The set {U(f ;P ) : P ∈ Π} of all upper Riemann sums of f is bounded from below by

m(b− a), and the set {L(f ;P ) : P ∈ Π} of all lower Riemann sums is bounded from above by

M(b− a).

Definition 11.4 (Darboux)
A function f : [a, b] → R is Riemann integrable on [a, b] if it is bounded and its upper

integral U(f) and lower integral L(f) are equal. In that case, the Riemann integral of f

on [a, b], dentoed by ∫ b

a
f(x)dx,

∫ b

a
f,

∫
[a,b]

f

or similar notations, is the common value of U(f) and L(f).

Note on An unbounded function is not Riemann integrable. For example, define f : [0, 1] → R

by

f(x) =

1/x if 0 < x ≤ 1

0 if x = 0

Then
∫ 1
0

1
xdx isn’t defined as a Riemann integral because f is unbounded. In fact, sup[0,x1] f =

∞, so the upper Riemann sums of f are not well-defined.

An integral with an unbounded inteval of integration, such as
∫∞
1

1
xdx also isn’t defined as

a Riemann integral.

Note on A bounded function on a compact interval may not have the Riemann integral=. For
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11 The Riemann Integral

example, the Dirichlet function f : [0, 1] → R is defined by

f(x) =

1 if x ∈ [0, 1] ∩Q

0 if x ∈ [0, 1]\Q.

And it is not Riemann integrable.

Definition 11.5
A partition Q = {J1, J2, . . . , Jm} is a refinedment of a partition P = {I1, I2, . . . , In} if

every interval Ik in P is an almost disjoint union of one or more intervals Jℓ in Q.

Note on That is, if we represent partitions by their endpoints, then Q is a refinement of P if

Q ⊃ P , meaning that every endpoint of P is an endpoint of Q.

Theorem 11.1
Suppose that f : [a, b] → R is bounded, P is a partitions of [a, b], and Q is refinement of

P . Then

U(f ;Q) ≤ U(f ;P ), L(f ;P ) ≤ L(f ;Q).

Proposition 11.6
If f : [a, b] → R is bounded and P,Q are partitions of [a, b], then

L(f ;P ) ≤ U(f ;Q).

Proposition 11.7
If f : [a, b] → R is bounded, then

L(f) ≤ U(f).

11.3 The Cauchy criterion for integrability

Theorem 11.2
A bounded function f : [a, b] → R is Riemann integrable iff for every ϵ > 0 there exists a

partition P of [a, b], which may depend on ϵ, such that

U(f ;P )− L(f ;P ) < ϵ.

Note on If U(f ;P ) − L(f ;P ) < ϵ, then U(f ;Q) − L(f ;Q) < ϵ for every refinement Q of

P , so the Cauchy condition means that a function is integrable iff its upper and lower sums get

arbitrarily close together for all sufficiently refined partitions.

Definition 11.6
The oscillation of a bounded function f on a set A is

oscA f = sup
A

f − inf
A

f.
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Note on If f : [a, b] → R is bounded and P = {I1, I2, . . . , In} is a partition of [a, b], then

U(f ;P )− L(f ;P ) =
n∑

k=1

sup
Ik

f · |Ik| −
n∑

k=1

inf
Ik

f · |Ik| =
n∑

k=1

oscIk f · |Ik| .

That is, if we can find a sufficiently refined partition P such that the oscillation of f on most

intervals is arbitrarily small, and the sum of the lengths of the remaining intervals (where the

oscillation of f is large) is arbitrarily small, then f is Riemann integrable.

Proposition 11.8
Suppose that f, g : [a, b] → R and g is integrable on [a, b]. If there exists a constant

C ≥ 0 such that

osc
I
f ≤ Cosc

I
g

on every integral I ⊂ [a, b], then f is integrable.

Note on A function is integrable if we can estimate its oscillation by the oscillation of an

integrable function.

Theorem 11.3
A bounded function f : [a, b] → R is Riemann integrable iff there is a sequence (Pn) of

partitions such that

lim
n→∞

[U (f ;Pn)− L (f ;Pn)] = 0.

In this case, ∫ b

a
f = lim

n→∞
U (f ;Pn) = lim

n→∞
L (f ;Pn) .

Note on This theorem provides one way to prove the existence of an integral and, in some cases,

evaluate it.

11.4 Continuous and monotonic functions

Theorem 11.4
A continuous function f : [a, b] → R on a compact interval is Riemann integrable.

Theorem 11.5
A monotonic function f : [a, b] → R on a compact interval is Riemann integrable.

Note on Monotonic functions needn’t be continuous, and they may be discontinuous at a

countably infinite number of points. For example, let {qk : k ∈ N} be an enumeration of the

rational numbers in [0, 1) and let (ak) be a sequence of strictly positive real numbers such that∑∞
k=1 ak = 1. Define f : [0, 1] → R by

f(x) =
∑

k∈Q(x)

ak, Q(x) = {k ∈ N : qk ∈ [0, x)} .

for x > 0, and f(0) = 0. Note that f is increasing, by this theorem, f is Riemann integrable
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on [0, 1]. However, it has a countably infinite number of jump discontinuities at every rational

number in [0, 1). Also, the function is continuous elsewhere.

11.5 Linearity, monotonicity, and additivity

Theorem 11.6 (Linearity)
If f : [a, b] → R is integrable and c ∈ R, then cf is integrable and∫ b

a
cf = c

∫ b

a
f.

Theorem 11.7
If f, g : [a, b] → R are integrable functions, then f + g is integrable, and∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Theorem 11.8
If f, g : [a, b] → R are integrable functions, then fg : [a, b] → R is integrable. If, in

addition, g ̸= 0 and 1/g is bounded, then f/g : [a, b] → R is integrable.

Theorem 11.9 (Monotonicity)
Suppose that f, g : [a, b] → R are integrable and f ≤ g. Then∫ b

a
f ≤

∫ b

a
g.

Theorem 11.10
Suppose that f : [a, b] → R is integrable and

M = sup
[a,b]

f, m = inf
[a,b]

f.

Then

m(b− a) ≤
∫ b

a
f ≤ M(b− a).

Theorem 11.11
If f : [a, b] → R is continuous, then there exists x ∈ [a, b] such that

f(x) =
1

b− a

∫ b

a
f.

Proposition 11.9
If f, g : [a, b] → R are bounded functions and f ≤ g, then

U(f) ≤ U(g), L(f) ≤ L(g).
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Theorem 11.12
If f is integrable, then |f | is integrable and∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ ∫ b

a
|f |.

Corollary 11.1
If f : [a, b] → R is integrable and M = sup[a,b] |f |, then∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ M(b− a).

Proposition 11.10

If f : [a, b] → R is a continuous function such that f ≥ 0 and
∫ b
a f = 0, then f = 0.

Theorem 11.13 (Additivity)
Suppose that f : [a, b] → R and a < c < b. Then f is Riemann integrable on [a, b] iff it

is Riemann integrable on [a, c] and [c, b]. Moreover, in that case,∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Definition 11.7
If f : [a, b] → R is integrable, where a < b, and a ≤ c ≤ b, then∫ a

b
f = −

∫ b

a
f,

∫ c

c
f = 0.

11.6 Further existence results

Proposition 11.11
Suppose that f, g : [a, b] → R and f(x) = g(x) except at finitely many points x ∈ [a, b].

Then f is integrable iff g is integrable, and in that case∫ b

a
f =

∫ b

a
g.

Note on Example For example, the function

f(x) =

0 if 0 < x ≤ 1

1 if x = 0

differs from the 0-function at one point. It is integrable and its integral is equal to 0.

Note on The conclusion can fail if the functions differ at a countably infinite number of points.

One reason is that we can turn a bounded function into an unbounded function by changing its
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values at an countably infinite number of points. For example, define f : [0, 1] → R by

f(x) =

n if x = 1/n for n ∈ N

0 otherwise
.

Then f is equal to the 0-function except on the countably infinite set {1/n : n ∈ N}, but f is

unbounded and therefore it’s not Riemann integrable.

The result is still false, however, for bounded functions that differ at a countably infinite

number of points. For example, the Dirichlet function is bounded and differs from the 0-function

on the countably infinite set of rationals, but it isn’t Riemann integrable.

Note on The Lebesgue integral is better behaved than the Riemann intgeral in this respect:

two functions that are equal almost everywhere, meaning that they differ on a set of Lebesgue

measure zero, have the same Lebesgue integrals. In particular, two functions that differ on a

countable set have the same Lebesgue integrals.

Proposition 11.12
Suppose that f : [a, b] → R is bounded and integrable on [a, r] for every a < r < b. Then

f is integrable on [a, b] and ∫ b

a
f = lim

r→b−

∫ r

a
f.

Note on For example, define f : [0, 1] → R by

f(x) =

sin(1/x) if 0 < x ≤ 1

0 if x = 0
.

f is bounded on [0, 1], is continuous and therefore integrable on [r, 1] for every 0 < r < 1. It

follows from this proposition that f is integrable on [0, 1].

Theorem 11.14
If f : [a, b] → R is bounded function with finitely many discontinuities, then f is Riemann

integrable.

Note on Example For example, define f : [0, 2π] → R by

f(x) =

sin(1/ sinx) if x ̸= 0, π, 2π

0 if x = 0, π, 2π
.

Then f is bounded and continuous except at x = 0, π, 2π, so it is integrable on [0, 2π].

Define f : [0, 1/π] → R by

f(x) =

sgn[sin(1/x)] if x ̸= 1/nπ for n ∈ N,

0 if x = 0 or x ̸= 1/nπ for n ∈ N,
.

Then f oscillates between 1 and -1 a countably infinite number of times as x → 0+. It has

jump discontinuities at x = 1/(nπ) and an essential discontinuity at x = 0. Nevertheless, it
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is Riemann integrable. To see this, note that f is bounded on [0, 1] and piecewise continuous

with finitely many discontinuities on [r, 1] for every 0 < r < 1. Theorem 11.14 implies that f is

Riemann integrable on [r, 1], and then Proposition 11.12 implies that f is integrable on [0, 1].

11.7 Riemann sums

Definition 11.8 (Tagged partition)
A tagged partition (P,C) of a compact interval [a, b] is a partition

P = {I1, I2, . . . , In}

of the interval together with a set

C = {c1, c2, . . . , cn}

of points such that ck ∈ Ik for k = 1, ..., n.

Note on We think of the point ck as a “tag” attached to the interval Ik.

Definition 11.9 (Riemann sum)
The Riemann sum of f with respect to the tagged partition (P,C) is defined by

S(f ;P,C) =
n∑

k=1

f (ck) |Ik| .

Note on That is, instead of using the supremum or infimum of f on the kth interval in the sum,

we evaluate f at a point in the interval. Roughly speaking, a function is Riemann integrable if

its Riemann sums approach the same value as the partition is refined, independently of how we

choose the points ck ∈ Ik.

Definition 11.10 (Mesh)
The mesh (or norm) of P is the maximum length of its intervals,

mesh(P ) = max
1≤k≤n

|Ik| = max
1≤k≤n

|xk − xk−1| .

Definition 11.11 (Riemann)
A function f : [a, b] → R is Riemann integrable on [a, b] if there exists a number R ∈ R

with the following property: For every ϵ > 0 there is a δ > 0 such that

|S(f ;P,C)−R| < ϵ

for every tagged partition (P,C) of [a, b] with mesh(P ) < δ. In that case, R =
∫ b
a f is

the Riemann integral of f on [a, b].

Theorem 11.15
A function is Riemann integrable (in the sense of Definition 11.11) iff it is Darboux

integrable (in the sense of Definition 11.4). Furthermore, in that case, the Riemann and
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Darboux integrals of the function are equal.

Definition 11.12 (Aϵ(P ), Bϵ(P ) and Sϵ(P ))
Let f : [a, b] → R be a bounded function. If P = {I1, I2, . . . , In} is a partition of [a, b]

and ϵ > 0, let Aϵ(P ) ⊂ {1, . . . , n} be the set of indices k such that

osc
Ik

f = sup
Ik

f − inf
Ik

f ≥ ϵ for k ∈ Aϵ(P ).

Similarly, let Bϵ(P ) ⊂ {1, . . . , n} be the set of indices such that

OSc
Ik

f < ϵ for k ∈ Bϵ(P ).

We denote the sum of the lengths of the intervals in P where the oscillation of f is “large”

by

sϵ(P ) =
∑

k∈Aϵ(P )

|Ik| .

Note on That is, the oscillation of f on Ik is “large” if k ∈ Aϵ(P ) and “small” if k ∈ Bϵ(P ).

Theorem 11.16
A function is Riemann integrable iff sϵ(P ) → 0 as mesh(P ) → 0 for every ϵ > 0.

Note on Fixing ϵ > 0, we say that sϵ(P ) → 0 as mesh(P ) → 0 if for every η > 0 there exists

δ > 0 such that mesh(P ) < δ implies that sϵ(P ) → η.

Note on This theorem has the drawback that the necessary and sufficient condition for Riemann

integrability is somewhat complicated and, in general, isn’t easy to verify.

11.8 The Lebesgue criterion

Definition 11.13
A set E ⊂ R has Lebesgue measure zero if for every ϵ > 0 there is a countable collection

of open intervals {(ak, bk) : k ∈ N} such that

E ⊂
∞⋃
k=1

(ak, bk) ,

∞∑
k=1

(bk − ak) < ϵ.

Note on The open intervals is this definition are not required to be disjoint, and they may

“overlap.”

Note on Every countable set E = {xk ∈ R : k ∈ N} has Lebesgue measure zero. To prove this,

let ϵ > 0 and for each k ∈ N define

ak = xk −
ϵ

2k+2
, bk = xk +

ϵ

2k+2
.

Then E ⊂
⋃∞

k=1 (ak, bk) since xk ∈ (ak, bk) and
∞∑
k=1

(bk − ak) =

∞∑
k=1

ϵ

2k+1
=

ϵ

2
< ϵ,
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12 Properties and Applications of the Integral

so the Lebesgue measure of E is equal to zero.

(The ‘ϵ/2k trick used here is a common one in measure theory.)

Note on The Dirichlet function is not Riemann integrable, however, it is Lebesgue integrable.

Its Lebesgue integral is given by ∫ 1

0
f = 1 · |A|+ 0 · |B|

where A = [0, 1]∩Q is the set of rational numbers in [0, 1], B = [0, 1]\Q is the set of irrational

numbers, and |E| denotes the Lebesgue measure of a set E. The Lebesgue measure of a subset

of R is a generalization of the length of an interval which applies to more general sets. It turns

out that |A| = 0 (countable set of real numbers) and |B| = 1. Thus, the Lebesgue integral of the

Dirichlet function is 0.

Theorem 11.17
A function f : [a, b] → R is Riemann integrable iff it is bounded and the set of points at

which it is discontinuous has Lebesgue measure zero.

Note on In particular, every bounded function with a countable set of discontinuities is Riemann

integrable, since such a set has Lebesgue measure zero. Riemann integrability of a function does

not, however, imply that the function has only countably many discontinuities. For example, the

Cantor set C has Lebesgue measure zero. Let χC : [0, 1] → R be the characteristic function of

the Cantor set,

χC(x) =

1 if x ∈ C,

0 otherwise
.

χC(x) is an example of a Riemann integrable function with uncountably many discontinuities.

12 Properties and Applications of the Integral

12.1 The fundamental theorem of calculus

Theorem 12.1 (Fundamental theorem of calculus I)
If F : [a, b] → R is continuous on [a, b] and differentiable in (a, b) with F ′ = f where

f : [a, b] → R is Riemann integrable, then∫ b

a
f(x)dx = F (b)− F (a).

Note on However, differentiable functions whose derivatives are unbounded or so discontinuous

that they aren’t Riemann integrable. For example, define F : [0, 1] → R by F (x) =
√
x. Then

F is continuous on [0, 1] and differentiable in (0, 1], with

F ′(x) =
1

2
√
x

for 0 < x ≤ 1.

The function is unbounded, so F ′ is not Riemann integrable on [0, 1].

56



12 Properties and Applications of the Integral

Theorem 12.2
Suppose that f : [a, b] → R is integrable on [a, b] and continuous at a. Then

lim
h→0+

1

h

∫ a+h

a
f(x)dx = f(a).

Theorem 12.3 (Fundamental theorem of calculus II)
Suppose that f : [a, b] → R is integrable on [a, b] and F : [a, b] → R is defined by

F (x) =

∫ x

a
f(t)dt.

Then F is continuous on [a, b]. Moreover, if f is continuous at a ≤ c ≤ b, then F is

differentiable at c and F ′(c) = f(c).

Note on The assumption that f is continuous is needed to ensure that F is differentiable. For

example, if

f(x) =

1 for x ≥ 0

0 for x < 0
,

then

F (x) =

∫ x

0
f(t)dt =

x for x ≥ 0

0 for x < 0
.

The function F is continuous but not differentiable at x = 0.

Note on The fundamental theorem of calculus states that differentiation and integration are

inverse operations in an appropriately understood sense. The theorem has two parts: in one

direction, it says roughly that the integral of the derivative is the original function; in the other

direction, it says that the derivative of the integral is the original function.

12.2 Consequences of the fundamental theorem

Theorem 12.4 (Integration by parts)
Suppose that f, g : [a, b] → R are continuous on [a, b] and differentiable in (a, b), and f ′,

g′ are integrable on [a, b]. Then∫ b

a
fg′dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′gdx.

Note on Example This can sometimes be used transform an integral into an integral that is

easier to evaluate, but the importance of integration by parts goes far beyond its use as an

integration technique. For example, for n = 0, 1, 2, 3, ..., let

In(x) =

∫ x

0
tne−tdt.

If n ≥ 1, then integration by parts with f(t) = tn and g′(t) = e−t gives

In(x) = −xne−x + n

∫ x

0
tn−1e−tdt = −xne−x + nIn−1(x).
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12 Properties and Applications of the Integral

It then follows by induction that

In(x) = n!

[
1− e−x

n∑
k=0

xk

k!

]
.

Theorem 12.5 (Change of variable)
Suppose that g : I → R differentiable on an open interval I and g′ is integrable on I . Let

J = g(I). If f : J → R continuous, then for every a, b ∈ I ,∫ b

a
f(g(x))g′(x)dx =

∫ g(b)

g(a)
f(u)du.

Note on One consequence of the second part of the fundamental theorem, is that every continuous

function has an antiderivative, even if it can’t be expressed explicitly in terms of elementary

functions. This provides a way to define transcendental functions as integrals of elementary

functions. For example, by making the substitution s = xt,

log x+ log y =

∫ x

1

1

t
dt+

∫ y

1

1

t
dt =

∫ x

1

1

t
dt+

∫ xy

x

1

s
ds =

∫ xy

1

1

t
dt = log(xy).

The error function

erf(x) =
2√
π

∫ x

0
e−t2dt

is an anti-derivative on R of the Gaussian function

f(x) =
2√
π
e−x2

.

Note on Discontinuous functions may or may not have an antiderivative and typically don’t.

12.3 Integrals and sequences of functions

Theorem 12.6
Suppose that fn : [a, b] → R is Riemann integrable for each n ∈ N and fn → f uniformly

on [a, b] as n → ∞. Then f : [a, b] → R is Riemann integrable on [a, b] and∫ b

a
f = lim

n→∞

∫ b

a
fn.

Note on Although we can integrate uniformly convergent sequences, we cannot in general

differentiate them.

Note on The pointwise convergence of functions is never sufficient to imply convergence of their

integrals. For example, for n ∈ N, define fn : [0, 1] → R by

fn(x) =

n if 0 < x < 1/n

0 if x = 0 or 1/n ≤ x ≤ 1
.

Then fn → 0 pointwise on [0, 1] but
∫ 1
0 fn = 1 for every n ∈ N.

Note on A more serious defect of the Riemann integral is that the pointwise limit of Riemann

integrable functions needn’t be Riemann integrable at all, even if it is bounded. For example, let
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{rk : k ∈ N} be an enumeration of the rational numbers in [0, 1] and define fn : [0, 1] → R by

fn(x) =

1 if x = rk for some 1 ≤ k ≤ n

0 otherwise
.

Then each fn is Riemann integrable since it differs from the zero function at finitely many points.

However, fn → f pointwise on [0, 1] to the Dirichlet function f , which is not Riemann integrable.

This is another place where the Lebesgue integral has better properties than the Riemann

integral. The pointwise (or pointwise almost everywhere) limit of Lebesgue measurable functions

is Lebesgue measurable.

Theorem 12.7
Let fn : [a, b] → R be a sequence of differentiable functions whose derivatives f ′

n :

[a, b] → R are integrable on (a, b). Suppose that fn → f pointwise and f ′
n → g

uniformly on (a, b) as n → ∞, where g : (a, b) → R is continuous. Then f : (a, b) → R

is continuously differentiable on (a, b) and f ′ = g.

Note on The key assumption in this theorem is that the derivatives f ′
n converge uniformly, not

just pointwise; the result is false if we only assume pointwise convergence of the f ′
n.

12.4 Improper Riemann integrals

Definition 12.1
Suppose that f : (a, b] → R is integrable on [c, b] for every a < c < b. Then the improper

integral of f on [a, b] is ∫ b

a
f = lim

ϵ→0+

∫ b

a+ϵ
f.

Note on The improper integral converges if this limit exists (as a finite real number), otherwise

it diverges.

Note on More general improper integrals may be defined as finite sums of improper integrals

of the previous forms. For example, if f : [a, b]\{c} → R is integrable on closed intervals not

including a < c < b, then ∫ b

a
f = lim

δ→0+

∫ c−δ

a
f + lim

ϵ→0+

∫ b

c+ϵ
f.

Definition 12.2
Suppose that f : [a,∞) → R is integrable on [a, r] for every r > a. Then the improper

integral of f on [a,∞) is ∫ ∞

a
f = lim

r→∞

∫ r

a
f.
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Definition 12.3
An improper integral

∫ b
a f is absolutely convergent if the improper integral

∫ b
a |f | con-

verges, and conditionally convergent if
∫ b
a f converges but

∫ b
a |f | diverges.

Theorem 12.8
Suppose that f, g : I → R are defined on some finite or infinite interval I . If |f | ≤ g

and the improper intergral
∫
I g converges, then the improper intergral

∫
I f converges

absolutely. Moreover, an absolutely convergent improper integral converges.

12.5 Principal value integrals

Definition 12.4
If f : [a, b]\{c} → R is integrable on closed intervals not including a < c < b, then the

principal value integral of f on [a, b] is

p.v.
∫ b

a
f = lim

ϵ→0+

(∫ c−ϵ

a
f +

∫ b

c+ϵ
f

)
.

Note on Some integrals have a singularity that is too strong for them to converge as improper

integrals but, due to cancelation between positive and negative parts of the integrand, they have

a finite limit as a principal value integral. For example, consider f : [−1, 1]\{0} defined by

f(x) = 1
x . The improper integral is∫ 1

−1

1

x
dx = lim

δ→0+

∫ −δ

−1

1

x
dx+ lim

ϵ→0+

∫ 1

ϵ

1

x
dx

= lim
δ→0+

log δ − lim
ϵ→0+

log ϵ.

Neither limit exists, so the improper integral diverges. If, however, we take δ = ϵ and combine

the limits, we get a convergent principal value integral, which is defined by

p.v.
∫ 1

−1

1

x
dx = lim

ϵ→0+

(∫ −ϵ

−1

1

x
dx+

∫ 1

ϵ

1

x
dx

)
= lim

ϵ→0+
(log ϵ− log ϵ) = 0.

The crucial feature of a principal value integral is that we remove a symmetric interval

around a singular point, or infinity. However, consider the principal value integral

p.v.
∫ 1

−1

1

x2
dx = lim

ϵ→0+

(∫ −ϵ

−1

1

x2
dx+

∫ 1

ϵ

1

x2
dx

)
= lim

ϵ→0+

(
2

ϵ
− 2

)
= ∞.

In this case, there is no cancelation and the principal value integral diverges to ∞.
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12.6 The integral test for series

Theorem 12.9 (Integral test)
Suppose that f : [1,∞) → R is a positive decreasing function (i.e., 0 ≤ f(x) ≤ f(y)

for x ≥ y). Let an = f(n). Then the series
∑∞

n=1 an converges iff the improper integral∫∞
1 f(x)dx converges. Furthermore, the limit

D = lim
n→∞

[
n∑

k=1

ak −
∫ n

1
f(x)dx

]
exists, and 0 ≤ D ≤ a1.

Note on This theorem is also useful for divergent series, since it tells us how quickly their partial

sums diverge.

12.7 Taylor’s theorem with integral remainder

Theorem 12.10 (Taylor with integral remainder)
Suppose that f : (a, b) → R hasn+1 derivatives on (a, b) and fn+1 is Riemann integrable

on every subinterval of (a, b). Let a < c < b. Then for every a < x < b,

f(x) = f(c) + f ′(c)(x− c) +
1

2!
f ′′(c)(x− c)2 + · · ·+ 1

n!
f (n)(c)(x− c)n +Rn(x)

where

Rn(x) =
1

n!

∫ x

c
f (n+1)(t)(x− t)ndt.

Note on The integral form requires slightly stronger assumptions than the Lagrange form, since

we need to assume that the derivative of order n+1 is integrable, but its proof is straightforward

once we have the integral. Moreover, the integral form generalizes to vector-valued functions

f : (a, b) → Rn, while the Lagrange form does not.

13 Metric, Normed and Topological Spaces

13.1 Vector (Linear) space

Definition 13.1 (Vector / Linear spaces)
Let F be either R or C. X is a vector space or linear space if there exists two operations,

addition (+) and scalar multiplication, such that

(1) x+ y = y + x for all x, y ∈ X;

(2) (x+ y) + z = x+ (y + z) for all x, y, z ∈ X;

(3) there exists an element 0 ∈ X such that 0 + x = x for all x ∈ X;

(4) for each x in X there exists an element −x ∈ X such that x+ (−x) = 0;

(5) c(x+ y) = cx+ cy for all x, y ∈ X , c ∈ F ;
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13 Metric, Normed and Topological Spaces

(6) (c+ d)x = cx+ dx for all x ∈ X , c, d ∈ F ;

(7) c(dx) = (cd)x for all x ∈ X , c, d ∈ F ;

(8) 1x = x for all x ∈ X .

13.2 Metric spaces

Definition 13.2 (Metric)
A metric d on a set X is a function d : X ×X → R such that for all x, y, z ∈ X:

(1) symmetry. d(x, y) = d(y, x);

(2) positivity. d(x, y) ≥ 0 and d(x, y) = 0 iff x = y;

(3) triangle inequality. d(x, z) ≤ d(x, y) + d(y, z).

Definition 13.3 (Metric space)
A metric space (X, d) is a set X with a metric d defined on X .

Definition 13.4 (Metric subspace)
Let (X, d) be a metric space. A metric subspace (A, dA) of (X, d) consists of a subset

A ⊂ X whose metric dA : A × A → R is the restriction of d to A; that is, dA(x, y) =

d(x, y) for all x, y ∈ A.

Note on The discrete metric on any set X is

d(x, y) =

0 if x = y

1 if x ̸= y
.

This metric is nevertheless useful in illustrating the definitions and providing counterexamples.

The absolute-value metric d : R× R → R on R is defined by

d(x, y) = |x− y|.

The natural numbers N and the rational numbers Q with the absolute-value metric are metric

subspaces of R.

The ℓ1 metric d : R2 × R2 → R on R is defined by

d(x, y) = |x1 − y1|+ |x2 − y2| x = (x1, x2) , y = (y1, y2) .

The Euclidean, or ℓ2, metric d : R2 × R2 → R is defined by

d(x, y) =

√
(x1 − y1)

2 + (x2 − y2)
2 x = (x1, x2) , y = (y1, y2) .

The ℓ∞, or maximum, metric d : R2 × R2 → R is defined by

d(x, y) = max (|x1 − y1| , |x2 − y2|) x = (x1, x2) , y = (y1, y2) .

Let C(K) denote the set of continuous functions f : K → R, where K ⊂ R is compact; for
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example, K = [a, b] is a closed, bounded interval. If f, g ∈ C(K) define

d(f, g) = sup
x∈K

|f(x)− g(x)| = ∥f − g∥∞, ∥f∥∞ = sup
x∈K

|f(x)|.

The function d : C(K)× C(K) → R is well-defined, since a continuous function on a compact

set is bounded, and d is a metric on C(K). Two functions are close with respect to this metric if

their values are close at every point x ∈ K. We refer to ||f ||∞ as the sup-norm of f .

Definition 13.5 (Open ball Br(x), closed ball Br(x))
Let (X, d) be a metirc space. The open ball Br(x) of radius r > 0 and center x ∈ X is

the set of points whose distance from x is less than r,

Br(x) = {y ∈ X : d(x, y) < r}.

The closed ball Br(x) of radius r > 0 and center x ∈ X as the set of points whose

distance from x is less than or equal to r,

B̄r(x) = {y ∈ X : d(x, y) ≤ r}.

Note on For R2 with the Euclidean metric, the ball Br(x) is an open disc of radius r centered at

x. For the ℓ1-metric, the ball is a diamond of diameter 2r, and for the ℓ∞-metric, it is a square

of side 2r.

Consider the space C(K) of continuous functions f : K → R on a compact set K ⊂ R

with the sup-norm metric. The ball Br(f) consists of all continuous functions g : K → R whose

values are within r of the values of f at every x ∈ K.

Let X be a set with the discrete metric. Then Br(x) = {x} consists of a single point if

0 ≤ r < 1 and Br(x) = X is the whole space if r ≥ 1.

Definition 13.6 (Bounded set)
Let (X, d) be a metirc space. A setA ⊂ X is bounded if there existx ∈ X and 0 ≤ R < ∞
such that d(x, y) ≤ R for all y ∈ A, meaning that A ⊂ BR(x).

Note on The triangle inequality implies that d(y, z) < R+ d(x, y) if d(x, z) < R, so

BR(x) ⊂ BR′(y) for R′ = R+ d(x, y).

Thus, if this definition holds for some x ∈ X , then it holds for every x ∈ X .

Note on Consider the space C(K) of continuous functions f : K → R on a compact set K ⊂ R

with the sup-norm metric. The set F ⊂ C(K) of all continuous functions f : K → R such that

|f(x)| ≤ 1 for every x ∈ K is bounded, since d(f, 0) = ∥f∥∞ ≤ 1 for all f ∈ F . The set

of constant functions {f : f(x) = c for all x ∈ K} isn’t bounded, since ∥f∥∞ = |c| may be

arbitrarily large.
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Definition 13.7 (Diameter)
Let (X, d) be a metirc space and A ⊂ X . The diameter 0 ≤ diamA ≤ ∞ of A is

diamA = sup{d(x, y) : x, y ∈ A}.

Note on It follows from the definitions that A is bounded iff diamA ≤ ∞.

13.3 Normed spaces

Definition 13.8 (Normed vector space)
A normed vector space (X, ||·||) is a vector spaceX together with a function ||·|| : X → R,

called a norm on X , such that for all x, y ∈ X and k ∈ R:

(1) 0 ≤ ∥x∥ < ∞ and ∥x∥ = 0 iff x = 0;

(2) ∥kx∥ = |k|∥x∥;

(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Proposition 13.1
If (X, || · ||) is a normed vector space, then d : X ×X → R defined by d(x, y) = ∥x− y∥
is a metric on X .

Note on A metric associated with a norm has the additional properties that for all x, y, z ∈ X

and k ∈ R

d(x+ z, y + z) = d(x, y), d(kx, ky) = |k|d(x, y)

which are called translation invariance and homogeneity, respectively. These properties imply

that the open balls Br(x) in a normed space are rescaled, translated versions of the unit ball

B1(0).

Definition 13.9 (Normed vector space)
For 1 ≤ p < ∞, the ℓp-norm ∥ · ∥p : Rn → R is defined for x = (x1, x2, . . . , xn) ∈
Rn by

∥x∥p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p .

For p = ∞, the ℓ∞-norm ∥ · ∥∞ : Rn → R is defined by

∥x∥∞ = lim
p→∞

∥x∥p = max (|x1| , |x2| , . . . , |xn|) .

Proposition 13.2
Let 1 ≤ p ≤ ∞. The space Rn with the ℓp-norm is a normed vector space.
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Definition 13.10 (Normed vector space)
Let X be a vector space. Two norms || · ||a, || · ||b on X are equivalent if there exist strictly

positive constants M ≥ m > 0 such that

m∥x∥a ≤ ∥x∥b ≤ M∥x∥a for all x ∈ X.

Note on Geometrically, two norms are equivalent if and only if an open ball with respect to

either one of the norms contains an open ball with respect to the other.

Theorem 13.1
Suppose that 1 ≤ p < ∞. Then, for every x ∈ Rn,

∥x∥∞ ≤ ∥x∥p ≤ n1/p∥x∥∞.

Corollary 13.1
The ℓp and ℓq norms on Rn are equivalent for every 1 ≤ p, q ≤ ∞.

13.4 Open and closed sets

Definition 13.11 (Open set and closed set)
Let X be a metric space. A set G ⊂ X is open if for every x ∈ G there exists r > 0 such

that Br(x) ⊂ G. A subset F ⊂ X is closed if F c = X\F is open.

Definition 13.12 (Neighborhood)
Let X be a metric space. A set U ⊂ X is a neighborhood of x ∈ X if Br(x) ⊂ U for

some r > 0.

Note on This definition then states that a subset of a metric space is open if and only if every

point in the set has a neighborhood that is contained in the set. In particular, a set is open if and

only if it is a neighborhood of every point in the set.

Note on Examples If d is the discrete metric on a set X , then every subset A ⊂ X is open, since

for every x ∈ A we have B1/2(x) = {x} ⊂ A. Every set is also closed, since its complement is

open.

If (X, d) is a metric space and A ⊂ X , then B ⊂ A is open in the metric subspace (A, dA)

iff B = A ∩G where G is an open subset of X .

Note on Open sets with respect to one metric on a set need not be open with respect to another

metric. For example, every subset of R with the discrete metric is open, but this is not true of R

with the absolute-value metric.

Proposition 13.3
Let X be a metric space. If x ∈ X and r > 0, then the open ball Br(x) is open and the

closed ball Br(x) is closed.
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Theorem 13.2
Let X be a metric space.

The empty set ∅ and the whole set X are open.

An arbitrary union of open sets is open.

A finite intersection of open sets is open.

Theorem 13.3
Let X be a metric space.

The empty set ∅ and the whole set X are closed.

An arbitrary intersection of closed sets is closed.

A finite union of closed sets is closed.

Definition 13.13
Let X be a metric space and A ⊂ X .

A point x ∈ A is an interior point of A if Br(x) ⊂ A for some r > 0.

A point x ∈ A is an isolated point of A if Br(x) ∩ A = {x} for some r > 0,

meaning that x is the only point of A that belongs to Br(x).

A point x ∈ A is a boundary point of A if, for every r > 0, the ball Br(x) contains

a point in A and a point not in A.

A point x ∈ A is an accumulation point of A if, for every r > 0, the ball Br(x)

contains a point y ∈ A such that y ̸= x.

Note on This definition then states that a set is open if and only if every point is an interior point

and closed if and only if every accumulation point belongs to the set.

Definition 13.14
Let A be a subset of a metric space. The interior A◦ of A is the set of interior points of A.

The boundary ∂A of A is the set of boundary points. The closure of A is A = A ∪ ∂A.

Proposition 13.4
Let X be a metric space and A ⊂ X . The interior of A is the largest open set contained

in A,

A◦ =
⋃

{G ⊂ A : G is open in X},

the closure of A is the smallest closed set that contains A,

A =
⋂

{F ⊃ A : F is closed in X},

and the boundary of A is their set-theoretic difference,

∂A = A\A◦.

Note on It follows that the interior A◦ is open, the closure A is closed, and the boundary ∂A is

closed. Furthermore, A is open if and only if A = A◦, and A is closed if and only if A = A.
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Note on Consider R with the absolute-value metric. If I = (a, b) and J = [a, b], then

I◦ = J◦ = (a, b), I = J = [a, b], and ∂I = ∂J = {a, b}. If A = {1/n : n ∈ N}, then A◦ = ∅

and Ā = ∂A = A∪{0}. Thus, A is neither open nor closed. If Q is the set of rational numbers,

then Q◦ = ∅ and Q = ∂Q = R.

Suppose that X is a set containing at least two elements with the discrete metric. If x ∈ X ,

then the unit open ball is B1(x) = {x}, and it is equal to its closure Br(x) = {x}. On the other

hand, the closed unit ball is B̄1(x) = X . Thus, in general metric space, the closure of an open

ball of radius r > 0 need not be the closed ball of radius r.

13.5 Completeness, compactness, and continuity

Definition 13.15
Let (X, d) be a metric space. A sequence (xn) in X converges to x ∈ X , written xn → x

as n → ∞ or limn→∞ xn = x, if for every ϵ > 0 there exists N ∈ N such that

n > N implies that d (xn, x) < ϵ.

Note on If d is the discrete metric on a set X , then a sequence (xn) converges in (X, d) iff it is

eventually constant.

Theorem 13.4
A subset F ⊂ X of a metric space X is closed iff the limit of every convergent sequence

in F belongs to F .

Definition 13.16 (Cauchy sequence)
Let (X, d) be a metric space. A sequence (xn) in X is a Cauchy sequence for every ϵ > 0

there exists N ∈ N such that

m,n > N implies that d (xm, xn) < ϵ.

Note on Every convergent sequence is Cauchy.

Definition 13.17
A metric space is complete if every Cauchy sequence converges.

Note on If d is the discrete metric on a set X , then (X, d) is a complete metric space since every

Cauchy sequence is eventually constant.

The space (R, | · |) is complete, but the metric subspace (Q, | · |) is not complete.

Proposition 13.5
A subspace (A, dA) of a complete metric space (X, d) is complete iff A is closed in X .

Definition 13.18
A Banach space is a complete normed vector space.
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Note on For example, R with the absolute-value norm is a one-dimensional Banach space.

Theorem 13.5
Let 1 ≤ p ≤ ∞. The vector space Rn with the ℓp-norrm is a Banach space.

Definition 13.19
A subset K ⊂ X of a metric space X is sequentially compact, or compact for short, if

every sequence in K has a convergent subsequence whose limit belongs to K.

Note on Compactness is an intrinsic property of a subset: K ⊂ X is compact iff the metric

subspace (K, dK) is compact.

Note on There is a significant difference between compact sets in a general metric space and in

R. Every compact subset of a metric space is closed and bounded, as in R, but it is not always

true that a closed, bounded set is compact.

First, a set must be complete, not just closed, to be compact. (A closed subset of R is

complete because R is complete.) For example, consider the metric space Q with the absolute

value norm. The set [0, 2] ∩Q is a closed, bounded subspace, but it is not compact.

Second, completeness and boundedness is not enough, in general, to imply compactness.

Consider N with the discrete metric,

d(m,n) =

0 if m = n

1 if m ̸= n
.

Then N is complete and bounded with respect to this metric. However, it is not compact since

xn = n is a sequence with no convergent subsequence.

Definition 13.20
Let (X, d) be a metric space. A subset A ⊂ X is totally bounded if for every ϵ > 0 there

exists a finite set {x1, x2, . . . , xn} of points in X such that

A ⊂
n⋃

i=1

Bϵ (xi) .

Theorem 13.6
A subset K ⊂ X of a metric space X is sequentially compact iff it is complete and totally

bounded.

Definition 13.21
Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is continuous at c ∈ X

if for every ϵ > 0 there exists δ > 0 such that

dX(x, c) < δ implies that dY (f(x), f(c)) < ϵ.

Note on A function f : R → R2, where R2 is equipped with the Euclidean norm || · || and R
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with the absolute value norm | · |, is continuous at c ∈ R2 if

|x− c| < δ implies that ∥f(x)− f(c)∥ < ϵ.

Explicitly, if f(x) = (f1(x), f2(x)), where f1, f2 : R → R, this condition reads: |x − c| < δ

implies that √
[f1(x)− f1(c)]

2 + [f2(x)− f2(c)]
2 < ϵ.

Define F : C([0, 1]) → R by F (f) = f(0), where C([0, 1]) is the space of continuous

functions f : [0, 1] → R equipped with the sup-norm, and R has the absolute value norm. That

is, F evaluates a function f(x) at x = 0. Thus, F is a function acting on functions, and its

values are scalars; such a function, which maps functions to scalars, is called a functional. Then

F is continuous, since ∥f − g∥∞ < ϵ implies that |f(0)− g(0)| < ϵ.

Theorem 13.7
Let X and Y be metric spaces. A function f : X → Y is continuous at c ∈ X iff

f(xn) → f(c) as n → ∞ for every sequence (xn) in X such that xn → c as n → ∞.

Definition 13.22
Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is uniformly continuous

on X if for every ϵ > 0 there exists δ > 0 such that

dX(x, y) < δ implies that dY (f(x), f(y)) < ϵ.

Theorem 13.8
A function f : X → Y between metric spaces X and Y is continuous on X iff f−1(V ) is

open in X for every open set V in Y .

Note on A function on a metric space is continuous if and only if the inverse images of open sets

are open.

Theorem 13.9
Let f : K → Y be a continuous function from a compact metric space K to a metric

space Y . Then f(K) is a compact subspace of Y .

Note on The continuous image of a compact set is compact.

Theorem 13.10
If f : K → Y is a continuous function on a compact set K to a metric space Y , then f is

uniformly continuous.

Note on A continuous function on a compact set is uniformly continuous.
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13.6 Topological spaces

Definition 13.23
Let X be a set. A collection T ⊂ P(X) of subsets of X is a topology on X if it satisfies

the following conditions.

The empty set ∅ and the whole set X belong to T .

The union of an arbitrary collection of sets in T belongs to T .

The intersection of a finite collection of sets in T belongs to T .

Definition 13.24
A set G ⊂ X is open with respect to T if G ∈ T , and a set F ⊂ X is closed with respect

to T if F c ∈ T .

Definition 13.25
A topological space (X, T ) is a set X together with a topology T on X .

Note on Every metric space with the open sets is a topological space. There are, however,

topological spaces whose topology is not derived from any metric on the space.

Let X be any set. Then T = P(X) is a topology on X , called the discrete topology. In this

topology, every set is both open and closed. This topology is the metric topology associated with

the discrete metric on X .

Let X be any set. Then T = {∅, X} is a topology on X , called the trivial topology. The

empty set and the whole set are both open and closed, and no other subsets of X are either

open or closed. If X has at least two elements, then this topology is different from the discrete

topology in the previous example, and it is not derived from a metric.

Definition 13.26
A topological space (X, T ) is Hausdorff if for every x, y ∈ X with x ̸= y there exist open

sets U, V ∈ T such that x ∈ U , y ∈ V and U ∩ V = ∅.

Note on That is, a topological space is Hausdorff if distinct points have disjoint neighborhoods.

In that case, we also say that the topology is Hausdorff. Nearly all topological spaces that arise

in analysis are Hausdorff, including, in particular, metric spaces.

Proposition 13.6
Every metric topology is Hausdorff.

Definition 13.27
Let X be a topological space. A set K ⊂ X is compact if every open cover of K has a

finite subcover. That is, if {Gi : i ∈ I} is a collection of open sets such that

K ⊂
⋃
i∈I

Gi,
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then there is a finite subcollection {Gi1 , Gi2 , . . . , Gin} such that

K ⊂
n⋃

k=1

Gik .

Theorem 13.11
A metric space is compact if and only if it sequentially compact.

Note on The Heine-Borel and Bolzano-Weierstrass properties are equivalent in every metric

space. However, it does not hold for general topological spaces.

Definition 13.28
Let X be a topological space. A sequence (xn) in X converges to x ∈ X if for every

neighborhood U of x there exists N ∈ N such that xn ∈ U for every n > N .

Definition 13.29
Let f : X → Y be a function between topological spaces X , Y . Then f is continuous at

x ∈ X if for every neighborhood V ⊂ Y of f(x), there exists a neighborhood U ⊂ X of

x such that f(U) ⊂ V . The function f is continuous on X if f−1(V ) is open in X for

every open set V ⊂ Y .

Note on These definitions are equivalent to the corresponding “ϵ − δ” definitions in a metric

space, but they make sense in a general topological space because they refer only to neighbor-

hoods and open sets.

For example, if X is a set with the discrete topology, then a sequence converges to x ∈ X iff

its terms are eventually equal to x, since {x} is a neighborhood of x. Every function f : X → Y

is continuous with respect to the discrete topology, then f : X → Y is continuous iff f−1({y})
is open in X for every y ∈ Y .

Let X be a set with the trivial topology. Then every sequence converges to every point

x ∈ X , since the only neighborhood of x is X itself. As this example illustrates, non-Hausdorff

topologies have the unpleasant feature that limits need not be unique, which is one reason why

they rarely arise in analysis.

Definition 13.30
A topological space X is disconnected if there exist nonempty, disjoint open sets U , V

such that X = U ∪ V . A topological space is connected if it is not disconnected.

Theorem 13.12
Suppose that f : X → Y is a continuous map between topological spaces X and Y . Then

f(X) is compact if X is compact, and f(X) is connected if X is connected.

Note on Continuous functions map compact sets and connected sets to compact sets and

connected sets, respectively.
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13.7 Function spaces

Definition 13.31
Let K ⊂ R be a compact set. The space C(K) consists of the continuous functions

f : K → R. Addition and scalar multiplication of functions is defined pointwise in the

usual way: if f, g ∈ C(K) and k ∈ R, then

(f + g)(x) = f(x) + g(x), (kf)(x) = k(f(x)).

Definition 13.32
The sup-norm of a function f ∈ C(K) is defined by

∥f∥∞ = sup
x∈K

|f(x)|.

Note on Thus, the sup-norm on C(K) is analogous to the ℓ∞-norm on Rn.

Definition 13.33
A sequence (fn) of functions fn : K → R converges uniformly on K to a function

f : K → R if

lim
n→∞

∥fn − f∥∞ = 0.

Definition 13.34
A sequence (fn) of functions fn : K → R is uniformly Cauchy on K if for every ϵ > 0

there exists N ∈ N such that

m,n > N implies that ∥fm − fn∥∞ < ϵ.

Note on Moreover, like R, the space C(K) is complete.

Theorem 13.13
The space C(K) with the sup-norm || · ||∞ is a Banach space.

Definition 13.35
If f : [a, b] → R is a Riemann integrable function, then the one-norm of f is

∥f∥1 =
∫ b

a
|f(x)|dx.

Theorem 13.14
The space C([a, b]) of continuous functions f : [a, b] → R with the one-norm || · ||1 is a

normed space.

Note on Although C([a, b]) equipped with the one-norm || · ||1 is a normed space, it is not

complete, and therefore it is not a Banach space.

Note on The ℓ∞-norm and the ℓ1-norm on the finite-dimensional space Rn are equivalent,

but the sup-norm and the one-norm on C([a, b]) are not. For exmaple, for n ∈ N, define the
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continuous function fn : [0, 1] → R by

fn(x) =

1− nx if 0 ≤ x ≤ 1/n

0 if 1/n < x ≤ 1
.

Then ∥fn∥∞ = 1 for every n ∈ N, but

∥fn∥1 =
∫ 1/n

0
(1− nx)dx =

[
x− 1

2
nx2

]1/n
0

=
1

2n
,

so ∥fn∥1 → 0 as n → ∞.

The incompleteness of C([a, b]) with respect to the one-norm suggests that we use the larger

space R([a, b]) of Riemann integrable functions on [a, b], which includes some discontinuous

functions. However, the space of Riemann integrable functions with the one-norm is still not

complete. To get a space that is complete with respect to the one-norm, we have to use the space

L1([a, b]) of Lebesgue integrable functions on [a, b]. This is another reason for the superiority

of the Lebesgue integral over the Riemann integral: it leads function spaces that are complete

with respect to integral norms.

13.8 The Minkowski inequality

Theorem 13.15 (Cauchy-Schwartz inequality)
If (x1, x2, . . . , xn), (y1, y2, . . . , yn) are points in Rn, then∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

x2i

)1/2( n∑
i=1

y2i

)1/2

.

Theorem 13.16 (Minkowski inequality)
If (x1, x2, . . . , xn), (y1, y2, . . . , yn) are points in Rn, then[

n∑
i=1

(xi + yi)
2

]1/2
≤

(
n∑

i=1

x2i

)1/2

+

(
n∑

i=1

y2i

)1/2

.

Definition 13.36
If 1 < p < ∞, then the Holder conjugate 1 < p′ < ∞ of p is the number such that

1

p
+

1

p′
= 1.

Note on If p = 1, then p′ = ∞; and if p = ∞ then p′ = 1.

Theorem 13.17 (Young’s inequality)
Suppose that 1 < p < ∞ and 1 < p′ < ∞ is its Holder conjugate. If a, b ≥ 0 are

nonnegative real numbers, then

ab ≤ ap

p
+

bp
′

p′
.

Moreover, there is equality iff ap = bp
′ .
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Theorem 13.18 (Holder’s inequality)
Suppose that 1 < p < ∞ and 1 < p′ < ∞ is its Holder conjugate. If (x1, x2, . . . , xn),

(y1, y2, . . . , yn) are points in Rn, then∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|p
′

)1/p′

.

Theorem 13.19 (Minkowski’s inequality)
Suppose that 1 < p < ∞ and 1 < p′ < ∞ is its Holder conjugate. If (x1, x2, . . . , xn),

(y1, y2, . . . , yn) are points in Rn, then(
n∑

i=1

|xi + yi|p
)1/p

≤

(
n∑

i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

.
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